ADDENDUM NO. 1
MUSIC BUILDING MODERNIZATION & ADDITION
NTD #2012-0043-00
DSA A-#04-112664 FILE #36-C4
Victor Valley College
18422 Bear Valley Road
Victorville, California 92392
June 6, 2013
NTD Architecture
955 Overland Court, Suite 100
San Dimas, CA 91773-1718

1. PART 1 - GENERAL

1.1. The following revisions and/or clarifications shall be made to the Bidding Requirements and Contract Documents. Revise and amend the Documents for the above named project in accordance with this Addendum. The bid shall reflect these addendum changes and each bidder shall make reference in their bid to this addendum.

1.2. All Bidding Requirements and Contract Documents shall apply to this addendum as originally indicated in the applicable portions of the contract documents, unless otherwise modified by this addendum.

1.3. GENERAL CLARIFICATIONS

1.3.1. Project documents and plan holders list may be viewed on-line by going to A & I Reprographics DFS website at: http://dfs.aandirepro.com and clicking on the Public Project link.

1.3.2. Deadline for any pre-bid RFI questions is Wednesday, June 12, 2013 at 4:00 p.m. Pre-bid RFI question form is attached in this addendum.

2. PART 2 - PROJECT MANUALS

2.1. REVISIONS TO BIDDING/CONTRACT REQUIREMENTS

2.1.1. Revision to “Notice Inviting Bids”: Bid documents are available from “A & I Reprographics at 1-800-233-8435 or email your requests to bid@aandirepro.com. Project documents and plan holders list may be viewed on-line by going to A & I reprographics DFS website at http://dfs.aandirepro.com and clicking on the Public Project link. There is a $120 non-refundable cost for plans and specifications.” Bidders may purchase CD-ROM of electronic files, however all bidders must purchase at least one hard copy set of the plans and specs.

2.2. REVISIONS TO SPECIFICATIONS

2.2.1. Specification Section 07 54 19, PVC Roofing – Adhered:

2.2.1.1. Paragraph 1.6.4.1: Change “60 MPH” to “100 MPH” to match warranty requirement per paragraph 1.10.1.4.

2.2.2. Specification Section 08 71 00, Door Hardware:

2.2.2.1. Revise Hardware Schedule:

2.2.2.1.1. Revise Lock on Sets 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 15.0, and 17.0 to: 22 49 8205; LNL 130KB t-turn; US26D SA.

2.2.3. Specification Section 09 30 13, Ceramic Tile Assemblies:

2.2.3.1. Add Paragraph 2.1.4:

2.2.3.1.1. 2.1.4: Exterior wall tile at building perimeter fascia:

2.2.3.1.1.1. Install existing 12" x 12" tile salvaged from demolition of existing accessory structure.

2.2.3.1.1.2. Provide an allowance for 90 linear feet of new 12" x 12" ceramic tile to match existing tile if existing tile is damaged from the demolition work.

2.2.4. Specification Section 09 91 00, Painting:

2.2.4.1. Paragraph 3.2.10.4: Replace “Room XXX” with “all”.

2.2.4.2. Paragraph 3.4.12.3: Replace “PFX-???” with “PFX-1”.

2.2.4.3. Paragraph 3.4.12.4: Replace “PFX-???” with “PFX-1”.

2.2.4.4. Paragraph 3.4.12.6: Replace “PFX-???” with “PFX-1”.

2.2.4.5. Paragraph 3.7.2.1: Revise keynote to (PFX-1), reference to paragraph 3.7.3.1.

2.2.4.6. Paragraph 3.7.2.2: Revise keynote to (PF-2).

2.2.4.7. Paragraph 3.7.2.3: Revise keynote to (PF-1).

2.2.4.8. Paragraph 3.7.2.5: Delete this paragraph.

2.2.4.9. Paragraph 3.7.2.6: Revise keynote to (PF-4).

2.2.4.10. Paragraph 3.7.2.8: Delete this paragraph.

2.2.4.11. Paragraph 3.7.2.14: Revise keynote to (PFX-2).

2.2.4.12. Paragraph 3.7.3.2: Revise keynote to (PFX-4).

2.2.5. Specification Section 10 21 16, Solid Plastic Toilet Compartments:

2.2.5.1. Paragraph 2.1.4.1: HDPE solid plastic panel shall comply with CBC Section 803.12, 803.1.2 and shall comply with NFPA 286 testing.

2.2.5.2. Paragraph 2.1.4.4.1: Revise to provide continuous heavy duty aluminum hinges with anodized finish to match other hardware, through bolted with
stainless steel torx head sex bolts. Provide self-closing hinge at accessible stall doors.

2.2.6. Specification Section 11 52 00, Audio-Visual Equipment:

2.2.6.1. Paragraph 3.5, Equipment Schedule: Replace pages 6 & 7 with attached revised Equipment Schedule pages 6, 7, & 8.

2.2.7. Specification Section 14 42 00, Wheelchair Lifts:

2.2.7.1. Paragraph 2.1.2: Revise basis of design manufacturer to: Ascension Protégé Model, or equal. (800) 459-0400 or (520) 881-3993, www.wheelchairlift.com.

2.2.7.2. Paragraph 2.1.4: Revise model numbers to:

2.2.7.2.1. #1 Choral Room: Protégé 5442FG-027.
2.2.7.2.2. #6 Instrumental Rehearsal: Protégé 5442FG-028.

2.2.7.3. Paragraph 2.1.8.7: Add: Provide Ascension battery backup for minimum five (5) lift cycles with full battery charge and lift carrying full rated load.

3. PART 3 - DRAWINGS

3.1. ARCHITECTURAL DRAWINGS

3.1.1. Drawing A6.1.1, Exterior Elevations:

3.1.1.1. Clarification to the following finishes Keynotes:

3.1.1.1.1. 2.05: Refer to 09 91 00, Paint PFX-4.
3.1.1.1.2. 2.06: Refer to 07 19 00, water repellent coating at masonry walls.
3.1.1.1.3. 2.07: Refer to 09 91 00, Paint PFX-1.
3.1.1.1.4. 2.14: Refer to 09 91 00, Paint PFX-1.
3.1.1.1.5. 7.07: Paint coping per 09 91 00, Paint PFX-1.
3.1.1.1.6. 9.03: Paint plaster per 09 91 00, Paint PFX-4.
3.1.1.1.7. 9.07: Ceramic tile to match existing per 09 30 13.
3.1.1.1.8. 9.22: Refer to 09 91 00, Paint PFX-4.

END OF ADDENDUM #1

Enclosures:

i) New Project Manual Documents Issued:
 a) Pre-bid RFI question form.
 b) Geotechnical Investigation Report dated 12/26/12 by Merrell Johnson.
 c) Specification Section 11 52 00, Revised A/V Equipment Schedule, pages 6 – 8.

End of Enclosures
CONTRACTOR’S REQUEST FOR INFORMATION

From: NTD Proj. #2012-0143-00 Date: ___________

To: NTD Project: VVC Music Bldg. Modernization & Addition

Disciplines Impacted: [] Structural [] Mechanical [] Electrical [] Architectural
[] Civil [] Landscape [] Kitchen [] _____________________

Reference: Drawing(s) ____________ Spec Section(s)____________ Other _____________________

Please clarify or provide the following information:

__
__
__
__
__
__
__
__
__
__
__

Possible Cost Impact [] Increase [] Decrease [] No Change [] Unknown

Possible Time Impact [] Increase [] Decrease [] No Change [] Unknown

This information is required as soon as possible, but no later than__________________________

[] PRIORITY ATTENTION REQUIRED

Copies to: _________________________

Contractor's Representative

Architect’s Response: Date: __________

__
__
__
__
__
__
__
__
__

Copies to: _________________________

NTD Representative
DIGITAL COMPOSITION – LAB #3

<table>
<thead>
<tr>
<th>Material Description</th>
<th>Mfr</th>
<th>Mfr PN</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projector Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projector I 3000 lumen I LCD I 7.3 lbs. w/ LAN</td>
<td>Boxlight</td>
<td>Seattle WX30N+</td>
<td>1</td>
</tr>
<tr>
<td>Lifetime replacement Lamp Program</td>
<td>Boxlight</td>
<td>Lamps4Life</td>
<td>1</td>
</tr>
<tr>
<td>Projector Mount/T-barAdapt/4" NPT/Quick Lock Cable</td>
<td>Premier</td>
<td>PDS-FCTA4W-QL</td>
<td>1</td>
</tr>
<tr>
<td>16:10, 113” Diag Cosmopolitan Electrol</td>
<td>DaLite</td>
<td>34460L</td>
<td>1</td>
</tr>
<tr>
<td>Cosmopolitan White Floating Mounting Brackets</td>
<td>DaLite</td>
<td>77027</td>
<td>1</td>
</tr>
<tr>
<td>Sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eight Input Scaling Presentation Switcher with PIP</td>
<td>Extron</td>
<td>60-569-01</td>
<td>1</td>
</tr>
<tr>
<td>RGB to DVI Scaler</td>
<td>Extron</td>
<td>60-906-01</td>
<td>1</td>
</tr>
<tr>
<td>HDMI Twisted Pair Extender</td>
<td>Extron</td>
<td>60-806-01</td>
<td>1</td>
</tr>
<tr>
<td>Toshiba SD V296 - DVD/VCR combo</td>
<td>Toshiba</td>
<td>SD-V296</td>
<td>1</td>
</tr>
<tr>
<td>Two Output VGA Distribution Amplifier</td>
<td>Extron</td>
<td>60-506-03</td>
<td>1</td>
</tr>
<tr>
<td>VGA Decora VGA w/3.5 mm plate</td>
<td>Zack</td>
<td>28-161-3.5</td>
<td>1</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhanced MediaLink® Controller with Ethernet Control</td>
<td>Extron</td>
<td>60-600-82</td>
<td>1</td>
</tr>
<tr>
<td>Five-Gang, Black</td>
<td>Extron</td>
<td>70-519-52</td>
<td>1</td>
</tr>
<tr>
<td>AV Furniture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0B2 Media Manager V2 Right Hvy Duty</td>
<td>Spectrum</td>
<td>55293HDQ18</td>
<td>1</td>
</tr>
<tr>
<td>Rack Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 pc EB1 Blank Panel</td>
<td>Middle</td>
<td>EB1-CP12</td>
<td>1</td>
</tr>
<tr>
<td>RSF 123; 1 U 3.5 Deep Uni Rack Shelf</td>
<td>Extron</td>
<td>60-190-20</td>
<td>1</td>
</tr>
<tr>
<td>Rack Mount Power Strip</td>
<td>Middle</td>
<td>PD-915R</td>
<td>1</td>
</tr>
<tr>
<td>Standard Rack Screws</td>
<td>Middle</td>
<td>HP</td>
<td>1</td>
</tr>
<tr>
<td>Custom Rack Shelf</td>
<td>Middle</td>
<td>RSH4A35</td>
<td>1</td>
</tr>
<tr>
<td>CAT5E 4 Pair Plenum Gray Cable</td>
<td>Amp</td>
<td>57825-4</td>
<td>300</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio Cable</td>
<td>Extron</td>
<td>22-157-03</td>
<td>1</td>
</tr>
<tr>
<td>Misc Materials</td>
<td>Misc</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Sub-Total

CHORAL ROOM – LAB #1

<table>
<thead>
<tr>
<th>Material Description</th>
<th>Mfr</th>
<th>Mfr PN</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projector Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projector 14200 lumen I WXGA I LCD I 16.5 lbs.</td>
<td>Boxlight</td>
<td>MPWX70e</td>
<td>1</td>
</tr>
<tr>
<td>Lifetime replacement Lamp Program</td>
<td>Boxlight</td>
<td>Lamps4Lite</td>
<td>1</td>
</tr>
<tr>
<td>Projector Mount/T-barAdapt/4" NPT/Quick Lock Cable</td>
<td>Premier</td>
<td>PDS-FCTA4W-QL</td>
<td>1</td>
</tr>
<tr>
<td>16:10, 164”Diag Cosmopolitan Electrol</td>
<td>DaLite</td>
<td>34468L</td>
<td>1</td>
</tr>
<tr>
<td>Cosmopolitan White Floating Mounting Brackets</td>
<td>DaLite</td>
<td>77027</td>
<td>1</td>
</tr>
<tr>
<td>Sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eight Input Scaling Presentation Switcher with PIP</td>
<td>Extron</td>
<td>60-569-01</td>
<td>1</td>
</tr>
<tr>
<td>RGB to DVI Scaler</td>
<td>Extron</td>
<td>60-906-01</td>
<td>1</td>
</tr>
<tr>
<td>HDMI Twisted Pair Extender</td>
<td>Extron</td>
<td>60-806-01</td>
<td>1</td>
</tr>
<tr>
<td>Toshiba SD V296 - DVD/VCR combo</td>
<td>Toshiba</td>
<td>SD-V296</td>
<td>1</td>
</tr>
<tr>
<td>Two Output VGA Distribution Amplifier</td>
<td>Extron</td>
<td>60-506-03</td>
<td>1</td>
</tr>
<tr>
<td>VGA Decora VGA w/3.5 mm plate</td>
<td>Zack</td>
<td>28-161-3.5</td>
<td>1</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Music Building Modernization & Addition

Victor Valley College
NTD # 2012-0043-00

AUDIO-VISUAL EQUIPMENT

11 52 00 - 6
<table>
<thead>
<tr>
<th>Material Description</th>
<th>Mfr</th>
<th>Mfr PN</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced MediaLink® Controller with Ethernet Control</td>
<td>Extron</td>
<td>60-600-82</td>
<td>1</td>
</tr>
<tr>
<td>Five-Gang, Black</td>
<td>Extron</td>
<td>70-519-52</td>
<td>1</td>
</tr>
<tr>
<td>AV Furniture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB2 Media Manager V2 Right Hvy Duty</td>
<td>Spectrum</td>
<td>55293HDQ18</td>
<td>1</td>
</tr>
<tr>
<td>Rack Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 pc EB1 Blank Panel</td>
<td>Middle</td>
<td>EB1-cPl2</td>
<td>1</td>
</tr>
<tr>
<td>RSF 123; 1 U 3.5 Deep Uni Rack Shelf</td>
<td>Extron</td>
<td>60-190-20</td>
<td>1</td>
</tr>
<tr>
<td>Rack Mount Power Strip</td>
<td>Middle</td>
<td>PD-915R</td>
<td>1</td>
</tr>
<tr>
<td>Standard Rack Screws</td>
<td>Middle</td>
<td>HP</td>
<td>1</td>
</tr>
<tr>
<td>AV2000 Smart Podium (Quick Connect)</td>
<td>Wireworks</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Custom Rack Shelf</td>
<td>Middle</td>
<td>R5H4A35</td>
<td>1</td>
</tr>
<tr>
<td>CAT5E 4 Pair Plenum Gray Cable</td>
<td>Amp</td>
<td>57825-4</td>
<td>300</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio Cable</td>
<td>Extron</td>
<td>22-157-03</td>
<td>1</td>
</tr>
<tr>
<td>Misc Materials</td>
<td>Misc</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

INSTRUMENTAL REHEARSAL – LAB #6

Projector Area

<table>
<thead>
<tr>
<th>Material Description</th>
<th>Mfr</th>
<th>Mfr PN</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projector I 4200 lumen I WXGA I LCD I 16.5 lbs.</td>
<td>Boxlight</td>
<td>MPWX70e</td>
<td>1</td>
</tr>
<tr>
<td>Lifetime replacement Lamp Program</td>
<td>Boxlight</td>
<td>Lamps4Life</td>
<td>1</td>
</tr>
<tr>
<td>Projector Mount/T-barAdapt/4" NPT/Quick Lock Cable</td>
<td>Premier</td>
<td>PDS-FCTA4W-QL</td>
<td>1</td>
</tr>
<tr>
<td>16:10, 164" Diag Cosmopolitan Electrol</td>
<td>DaLite</td>
<td>34468L</td>
<td>1</td>
</tr>
<tr>
<td>Cosmopolitan White Floating Mounting Brackets</td>
<td>DaLite</td>
<td>77027</td>
<td>1</td>
</tr>
</tbody>
</table>

Sources

<table>
<thead>
<tr>
<th>Material Description</th>
<th>Mfr</th>
<th>Mfr PN</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eight Input Scaling Presentation Switcher with PIP</td>
<td>Extron</td>
<td>60-569-01</td>
<td>1</td>
</tr>
<tr>
<td>RGB to DVI Scaler</td>
<td>Extron</td>
<td>60-906-01</td>
<td>1</td>
</tr>
<tr>
<td>HDMI Twisted Pair Extender</td>
<td>Extron</td>
<td>60-806-01</td>
<td>1</td>
</tr>
<tr>
<td>Toshiba SD V296 - DVD/VCR combo</td>
<td>Toshiba</td>
<td>SD-V296</td>
<td>1</td>
</tr>
<tr>
<td>Two Output VGA Distribution Amplifier</td>
<td>Extron</td>
<td>60-506-03</td>
<td>1</td>
</tr>
<tr>
<td>VGA Decora VGA w/3.5 mm plate</td>
<td>Zack</td>
<td>28-161-3.5</td>
<td></td>
</tr>
</tbody>
</table>

Controls

<table>
<thead>
<tr>
<th>Material Description</th>
<th>Mfr</th>
<th>Mfr PN</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced MediaLink® Controller with Ethernet Control</td>
<td>Extron</td>
<td>60-600-82</td>
<td></td>
</tr>
<tr>
<td>Five-Gang, Black</td>
<td>Extron</td>
<td>70-519-52</td>
<td>1</td>
</tr>
</tbody>
</table>

AV Furniture

<table>
<thead>
<tr>
<th>Material Description</th>
<th>Mfr</th>
<th>Mfr PN</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB2 Media Manager V2 Right Hvy Duty</td>
<td>Spectrum</td>
<td>55293HDQ18</td>
<td>1</td>
</tr>
<tr>
<td>Rack Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Pc EB1 Blank Panel</td>
<td>Middle</td>
<td>EB1-cPl2</td>
<td>1</td>
</tr>
<tr>
<td>RSF 123; 1 U 3.5 Deep Uni Rack Shelf</td>
<td>Extron</td>
<td>60-190-20</td>
<td>1</td>
</tr>
<tr>
<td>Rack Mount Power Strip</td>
<td>Middle</td>
<td>PD-915R</td>
<td>1</td>
</tr>
<tr>
<td>Standard Rack Screws</td>
<td>Middle</td>
<td>HP</td>
<td>1</td>
</tr>
<tr>
<td>AV2000 Smart Podium (Quick Connect)</td>
<td>Wireworks</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Custom Rack Shelf</td>
<td>Middle</td>
<td>R5H4A35</td>
<td>1</td>
</tr>
<tr>
<td>CAT5E 4 Pair Plenum Gray Cable</td>
<td>Amp</td>
<td>57825-4</td>
<td>300</td>
</tr>
</tbody>
</table>

Music Building Modernization & Addition
Victor Valley College
NTD # 2012-0043-00

AUDIO-VISUAL EQUIPMENT
11 52 00 - 7
Materials

<table>
<thead>
<tr>
<th>Material Description</th>
<th>Mfr</th>
<th>Mfr PN</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio Cable</td>
<td>Extron</td>
<td>22-157-03</td>
<td>1</td>
</tr>
<tr>
<td>Misc Materials</td>
<td>Misc</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Sub-Total

KEYBOARDING LAB – LAB #7

Projector Area
- Projector I 3000 lumen I LCD I 7.3 lbs. w/ LAN.
 Boxlight Seattle WX30N+ 1
- Lifetime replacement Lamp Program
 Boxlight Lamps4life 1
- Projector Mount/T-barAdapt/4” NPT/Quick Lock Cable
 Premier PDS-FCTA4W-QL 1
- 16:10, 113” Diag Cosmopolitan Electrol
 DaLite 34460L 1
- Cosmopolitan White Floating Mounting Brackets
 DaLite 77027 1

Sources
- Eight Input Scaling Presentation Switcher with PIP
 Extron 60-569-01 1
- RGB to DVI Scaler
 Extron 60-906-01 1
- HDMI Twisted Pair Extender
 Extron 60-806-01 1
- Toshiba SD V296 - DVD/VCR combo
 Toshiba SD-V296
- Two Output VGA Distribution Amplifier
 Extron 60-506-03 1
- VGA Decora VGA w/3.5mm plate
 Zack 28-161-3.5 1

Controls
- Enhanced MediaLink® Controller with Ethernet Control
 Extron 60-600-82 1
- Five-Gang, Black
 Extron 70-519-52 1

AV Furniture
- OB2 Media Manager V2 Right Hvy Duty
 Spectrum 55293HDQ18

Rack Equipment
- 12 pc EB1 Blank Panel
 Middle EB1-CP12
- RSF 123; 1 U 3.5 Deep Uni Rack Shelf
 Extron 60-190-20

END OF SECTION
Preliminary Geotechnical Investigation Revision 1

Music Auxiliary Building
Victor Valley Community College
Victorville, CA.

Prepared For:
Victor Valley Community College District
18422 Bear Valley Rd.
Victorville, CA 92395
Attn: Steve Garcia

MEC No: 12.0064.0155
December 26, 2012
December 26, 2012

Victor Valley Community College District
18422 Bear Valley Rd.
Victorville, CA. 92395
Attn: Steve Garcia

Re: Geotechnical Investigation
 Music Auxiliary Building
 Victor Valley Community College

Mr. Garcia,

In accordance with your authorization, we have performed a preliminary soils investigation for the above-referenced project. The following report presents our findings based on the results of our field and laboratory investigation.

The investigation was planned and performed using the information provided by your firm in the development of this project. Our report includes recommendations for the development of this site, and presents an evaluation of existing conditions for the design of proposed foundations within this project site.

We anticipate the enclosed information to be highly useful during the design and construction phases of this project. If you have questions, please do not hesitate to contact our firm.

Sincerely,

Merrell Engineering Company, Inc.

James J. Stone, Geotechnical Engineer
RGE 808 Exp. 12/31/2013

Ryan T. Heywood
Project Manager
Table of Contents

- Introduction ... 5
- Investigation ... 5
- Scope of Services .. 5
- Site Conditions ... 6
- Proposed Development ... 6

- Findings .. 7
- Field Investigation .. 7
- Laboratory Investigation .. 7
- Subsurface Conditions ... 7
- Site Class, Site Coefficient and Seismic Design Category ... 8

- Conclusions and Recommendations .. 8
- Conclusions ... 8
- General Recommendations ... 9
- General Grading Requirements .. 9
- Clearing & Grubbing .. 9
- Scarification .. 10
- Compacted Fill Material ... 10
- Compacted Fill Placement ... 10
- Settlement ... 10
- Sub-Excavation ... 11
- Imported Soils .. 11
- Foundation Design ... 11
- Slabs on Grade ... 12
- Lateral Loading ... 13
- Drainage ... 13
- Footing and Utility Excavations ... 14
- Excavation Procedures ... 14
- Temporary Slopes ... 14
- Shoring ... 15

- Limitations and Additional Services ... 16
- Limitations ... 16
- Additional Testing .. 17
Attachments

Attachment A, Exploratory Logs
 A1 Soil Classification Chart
 A2 Exploratory Logs

Attachment B, Laboratory Testing
 B1 Compaction Characteristics (Moisture Density Test)
 B2 Sieve Analysis
 B3 Atterberg Limits
 B4 pH, Resistivity, Sulfide, Chloride & Sulfate
 B5 Expansion Index
 B6 Consolidation

Attachment C, Site Reference
 C1 Topographic Plot
 C2 Site Vicinity Map
 C3 Aerial View
 C4 Approximate Boring Locations Plot
 C5 Site Photographs

Attachment D, Detail Illustrations
 D1 Transition Lot Detail
 D2 Benching Detail
 D3 Building Setback Detail

Attachment E, General Grading Specifications

Attachment F, Important Information About Your Geotechnical Report (ASFE Publication)

Attachment G, Geologic Hazards Report
Introduction

Investigation

The purpose of this investigation was to explore and evaluate the subsurface soil conditions specifically for the proposed music auxiliary building, and to provide recommendations for site grading, design and construction of the proposed building foundation(s) and site improvements.

We have performed a foundation investigation and comprised this report with our findings. This report represents the results of a subsurface geotechnical investigation at the site. The location of the proposed development is on the enclosed Site Vicinity Map (Attachment C2).

This report was written specifically for this project as described in this report. It is intended to be used by Victor Valley Community College District and associated design professionals in the development of this project. Since this report is intended for use by the designer(s), it should be recognized that it is impossible to include all construction details at this phase in the project. Additional consultation may be prudent to interpret these findings for contractors, or possibly refine these recommendations based upon the final and actual conditions encountered during construction.

Scope of Services

Specifically, the scope of the investigation consisted of the following:

- Field investigation consisting of a total of two exploratory excavations. The exploratory excavations extended to a maximum depth of fifty feet below the existing surface elevations.
- Laboratory Investigation consisting of Sieve Analysis, Compaction Characteristics (moisture density test), Consolidation, pH, Resistivity, Sulfate, Chloride and Sulfide, Expansion Index, and Atterberg Limits, a direct Direct Shear of relatively undisturbed material was attempted but due to lack of cohesion, was not possible.
- Preparing this report, presenting our findings, conclusions and recommendations.

The scope of our investigation did not include the following:

- A detailed study of groundwater conditions
- The determination of dynamic soils properties.
• A detailed study of geological sand seismic hazards studies.
• The assessment of general site environmental conditions for the presence of contaminants in the soils and groundwater.
• Empirical Prediction of Earthquake Induced Liquefaction Potential

Site Conditions

The site is located on the Victor Valley Community College campus located at 18422 Bear Valley Rd. in Victorville, CA at lat 34.472052, lon -117.264315. (see attached Vicinity Map C2 and Topographic Map C1). It is located to the West of the existing music building and South of the advanced technology building. Currently at the site is an existing student bathroom which will be removed prior to the construction of the proposed building. The topography for the site is relatively level. No free moisture was encountered during the exploratory boring operation. Between 1967 and 2010 a well approximately 0.4 miles Northeast of the site indicated that depth to ground water ranged between 45’ and 78’. Between 1992 and 2010, a well approximately 0.75 miles to the East of the site (adjacent to the Eastern bank of the Mojave River) indicated depth to ground water ranged from 35’ to 67’. Between 1994 and 2010, a well approximately 0.90 miles to the Southwest indicated ground water ranged from 202’ to 233’ Groundwater is estimated to be around 85 to 130 +/- feet at the site.

(ftp://wdr.water.usgs.gov/nwisgmap/)

Proposed Development

The details provided to our office in regards to the proposed development are that Victor Valley Community College District intends to construct a new 40’ x 70’ (approximately 2,800 GSF) one story Music Auxiliary Building (on the footprint of the existing restroom). The proposed structure is to match the existing slab on grade, CMU walls and steel roof framing. The structural details for the proposed building were not available at the time of this report, but it is anticipated that it will be similar to previous development details. It should be noted that once the final details for the structure are available our office should be provided a set of plans for review and comments to develop additional recommendations if necessary.

It is believed that the grading operations for the site will consist of foundation excavating and compaction to create uniformly compacted and level foundations for the proposed structure. If grading limits/operations are in excess of those stated, our office should be notified to evaluate
the conditions or to develop additional recommendations. Our office should be provided a copy of the approved grading plan for review and comments to develop additional recommendations if necessary.

Findings

Field Investigation

The soil conditions underlying the site were explored by means of two exploratory excavations extending to fifty feet in depth. The exploratory borings were logged by Ryan Heywood of Merrell-Johnson Companies, and conducted by 2R drilling with a CME drill rig equipped with 6” x 5’ hollow stem augers.

A continuous log of the subsurface conditions encountered within the exploratory excavations was recorded at the time of excavating operations and has been included as Attachment A2 within this report. Disturbed samples and relatively undisturbed samples of typical soil types were obtained and returned to the laboratory for testing and evaluation.

Laboratory Investigation

The laboratory test for the soil types encountered consisted of the following:

- **B1** Laboratory Compaction Characteristics of Soil (Moisture Density Test)
- **B2** Grain Size Analysis
- **B3** Atterberg Limits
- **B4** pH, Resistivity, Sulfide, Chloride & Sulfate
- **B5** Expansion Index
- **B6** Consolidation

Subsurface Conditions

Data from our exploratory excavations indicates that the soil profile at the site typically consists of what appears to be natural occurring alluvium and colluvial materials to the maximum depths explored, with the subsurface soils consisting of SM Silty sand, ML Sandy silt, SW-SM Well graded sand with silt, SW-SM Well graded sand with silt and gravel having percent fines (passing the No. 200 sieve) of 5.2 to 52.2.
Free moisture was not encountered in our field borings.

It should be noted that some caving of the trenches occurred during trenching operations, indicating potentially non-cohesive soils.

Site Class, Site Coefficient and Seismic Design Category

Based on the available information gathered for the proposed project, the soils underlying the site are classified as site class D according to the 2010 CBC. The Design Acceleration Parameters were determined according to chapter 11 of the ASCE 7-05 and are provided in the table below.

| 2010 California Building Code – Seismic Parameters |
|---------------------------------|-----------------|
| Mapped Spectral Acceleration Parameters | \(S_s = 1.504 \) and \(S_1 = 0.600 \) |
| Site Coefficients | \(F_a = 1.00 \) and \(F_v = 1.500 \) |
| Adjusted Maximum Considered Earthquake (MCE) Spectral Response Parameters | \(S_{MS} = 1.504 \) and \(S_{MF} = 0.900 \) |
| Design Spectral Acceleration Parameters | \(S_{DS} = 1.003 \) and \(S_{D1} = 0.600 \) |

Conclusions and Recommendations

Conclusions

Based upon our field investigation and test data, combined with our engineering analysis, experience, and judgment, the on-site natural soils are considered to have good strength characteristics and low to moderate compressibility under relatively light to moderately heavy loads.

Existing upper soils overlying localized areas of the site are not considered suitable for the support of permanent foundations, floor slabs and pavements. These upper soils will not in their present condition, provide a uniform or adequate support for the proposed permanent structures. The underlying native soils below these upper soils are generally in a dense state and are considered adequate for support. From a foundation standpoint, the underlying natural soils are generally considered competent bearing materials. Based on the soil types encountered and the nature of the material as determined by the laboratory testing, the on-site soils are considered to have a (very low) potential for being...
expansive. Further testing may be necessary during construction should other soil types be encountered. Adequate provisions in design and construction with the on-site soils should be considered to reduce their shrink-swell effects on foundations and floor slabs.

Assuming the above recommendation are followed and that the possibility of a ground water condition existing is unlikely, the generally dense to medium dense underlying subsoils are such that the liquefaction potential at the site is considered to be low to moderate for ground motions resulting from the maximum credible earthquake that could conceivably occur and affect the site. In the unlikely event of liquefaction at the site, it is expected to be localized and would have minor impact on the development, provided that the recommendations of this report are implemented.

It is our opinion that the proposed development is feasible, provided the recommendations in this report are implemented and special consideration/precautions are taken in design of the foundations and structures.

General Recommendations

Pre-Job Conference
Prior to the commencement of grading, a pre-job conference meeting should be held with representatives of this firm. The purpose of this meeting would be to clarify any questions related to the recommendations and specifications of this report.

General Grading Requirements

All grading operations must be observed and tested by our firm. Any imported fill material must be approved for use prior to importing. The governmental agencies having jurisdiction over the project must be notified prior to commencement of grading so that the necessary grading permits may be obtained and arrangements may be made for the required inspection(s).

Clearing & Grubbing

All debris, vegetation, irrigation lines and asphalt concrete pavement shall be removed prior to any grading work performed.

No debris or vegetation will be placed as site fill or grading operations. All deleterious materials (asphalt concrete, concrete, wood, trash, etc.) shall be disposed in accordance with the owner’s instructions. Any roots shall be removed to a depth of five feet below the pad elevation.
Scarification

All areas to receive fill and all areas of cut to support sub-grade soils shall be scarified to a depth of 12 inches. Scarified material shall be brought to within +/- 2 percent of optimum moisture content and compacted to a minimum 90 percent relative compaction prior to the placement of fill (See Appendix E General Grading Specifications).

Compacted Fill Material

Fill material shall be from clean imported soils with rocks or other particles no larger than four inches in diameter. Our Engineer or representative should approve any import fill prior to placement. The on-site soils, less the oversized particles, debris or organic matter may be used in required fills.

Cobbles, rock and other particles larger than four inches in diameter should not be used in the fill.

Compacted Fill Placement

All fill placement and compaction shall be in accordance with the specification contained in this report, see Appendix E General Grading Specifications.

Settlement

Foundation size and depth, the foundation soils and the loads imposed can affect the estimated settlements, however for preliminary design purposes, the total settlement is estimated to be approximately ¾ inches for spread footings with a maximum column load of 60 kips and an allowable bearing capacity of 2,000 psf founded on compacted fill and prepared in accordance with the recommendations in this report.

Column spacing, loads imposed, and foundation size and depth can all affect differential settlements. However, based on our investigation of the site, differential settlements are anticipated to be ½ inches in 40 feet or less. When detailed foundation load information is provided, comprehensive settlement analysis can be performed to evaluate total and differential settlement.
Sub-Excavation

All area to support the development of this site that is susceptible to settlements (i.e. footings, slabs, lots, and site structure) shall be over-excavated to a depth of three (3) feet. The above-mentioned re-compacted soil beneath the bottom of the proposed foundation shall extend horizontally 5 feet beyond the foundation of these structures. Boulders and cobble exceeding four inches encountered during sub-excavation and scarification operations should be removed and not used in fill.

The sub-excavation requirements must be followed in cut areas also if any portion of the foundation is founded in fill (see Attachment D-1, Transition Lot Detail).

Imported Soils

Imported soils required to complete the grading operations should consist of predominantly granular material with an expansion index less than 35 when tested in accordance with ASTM D-4829 and shall have a minimum R-Value of 60. All imported material shall be inspected and approved by our Engineer or representative prior to placement. Imported material utilized for trench backfill operations shall consist of granular material with a minimum sand equivalent of 35.

Foundation Design

If soils are prepared as recommended, a firm, dense soil should be established. The proposed structure may be supported on a foundation as designed and established by the structural engineer for this project. The minimum width and depth of the footings should be per the structural engineer’s design and reviewed by our office. In no case shall they be less than 12 inches in width and 12 inches in depth.

For the minimum width and depth, footings may be designed for a maximum safe soil bearing pressure of 2000 pounds per square foot for dead plus live loads for a depth of one (1) foot below grade. This allowable bearing pressure may be increased by 250 pounds per square foot for each additional foot of depth to a maximum safe soil bearing pressure of 2500 pounds per square foot for dead plus live loads. The 2500 pounds per square foot is for a depth three feet below grade. These bearing values may be increased by one-third for wind or seismic loading. The actual bearing value of the fill will depend on the material used and the compaction methods employed. The quoted bearing value should be applicable if the on-site or other acceptable materials are used and compacted as recommended. The bearing value of the fill
should be confirmed upon completion of the grading operations.

Since the recommended bearing value is a net value, the weight of the concrete within the footings may be taken as equal to 50 pounds per cubic foot, and the weight of soil backfill may be neglected in determining the downward foundation loads for footing design.

Foundation concrete should be placed in compacted trenches with no caving of the sidewalls. The foundation excavation should be properly backfilled as recommended for site fill and tested for the percent of compaction. Concrete forms should not be placed until our office has inspected and conducted the field and laboratory testing required.

All footing excavations should be observed by personnel of our firm to verify satisfactory of supporting soils. Footings should be deepened if necessary to extend into satisfactory supporting soils.

Concrete foundations should be designed according to current local and state codes and constructed with a minimum 28-day compressive strength of 3000 psi and a water/cement ratio as dictated by the American Concrete Institutes Manuals of Concrete Practice. The foundation reinforcement shall be designed and calculated by the structural engineer in accordance with the reinforcement requirements per the Uniformed Building Code or per the California Building Code as indicated by the governing agency.

To reduce the potential of sulfate attack on concrete in contact with on-site native soils, a type II-V cement is recommended for use in concrete mix design.

Foundations should be designed with continuous reinforcing steel top and bottom. Reinforcing steel should maintain minimum clearances specified by all applicable codes and job specifications.

Slabs on Grade

If the sub-grade is prepared as recommended as indicated within this report, building floor slabs can be supported on grade. To provide adequate support, concrete slabs on grade should bear on compacted soil. The final pad surface should be rolled to provide a smooth dense surface upon which to place the concrete. Therefore, we recommend that our field representative observe all grading operations and the condition of the final sub-grade soils immediately prior to slab-on grade construction and if necessary, perform further density and moisture content tests to determine the suitability of the final prepared sub-grade.
If the slab is to receive moisture sensitive coverings, it should be provided with a moisture vapor barrier. A low-slump concrete should be used to minimize possible curling of the slab. A 2-inch-thick layer of coarse sand can be placed over the vapor retarding membrane to reduce slab curling. If this sand bedding is used, care should be taken during the placement of the concrete to prevent displacement of the sand. The concrete slab should be allowed to cure properly before placing vinyl or other moisture-sensitive floor covering.

Concrete slabs on grade should be minimum thickness of four inches with a 28-day compressive strength of 2,500 psi and water/cement ratio as dictated by the American Concrete Institutes Manuals of Concrete Practice, a type II-V cement should be used. Slabs on grade shall have a minimum reinforcement per the American Concrete Institutes Manual of Concrete Practice and minimum code concrete to steel ratios for temperature and shrinkage requirements. *The slab on grade reinforcement should be tied into the foundation reinforcement.*

All concrete slabs should be designed to have concrete construction (i.e. jointing, etc.) in conformance with the American Concrete Institute Manual of Concrete Practice design and construction standards.

Slabs on grade should be designed with reinforcing steel in each direction. The structural designer of proposed development should allow for minimum or better ratios of temperature and shrinkage reinforcing steel. Slab on grade reinforcing steel should be doweled / tied into foundations and/or grade beams.

Lateral Loading

Resistance to lateral loads will be provided by passive earth pressure and base friction. For footings bearing against approved native fill, the passive earth pressure may be developed at a rate of 350 pounds per square foot of depth. A safe assumption for basal friction would be 0.35 of the actual dead load. Base friction and passive earth pressure may be combined without reduction. Active earth pressure for retaining structures (retaining walls 8 feet in height) should be designed with an equivalent fluid pressure of 45 pounds per square foot of height, plus any additional building or equipment surcharges.

Drainage

It is important that all water be kept a minimum of 10 feet from structures and slabs. No ponding adjacent to buildings/structures is allowed. All surfaces shall have a positive two percent minimum slope away from structures.
Retaining walls should be designed to resist hydrostatic pressures or be provided with a drainpipe, weep holes and/or the necessary drainage capabilities for the wall.

If a basement or subterranean structure is constructed a subsurface drainage system is recommended to be designed and constructed.

Footing and Utility Excavations

Footing and utility excavations for this project may require sloping sidewalls or shoring. All excavations shall be done in accordance with the California Administrative code, Title 8, Industrial Relations, Chapter 4, Division of Industrial Safety, Subchapter 4, Construction Safety Orders, Article 6. Temporary excavations shall have sloping sidewalls no steeper than 1(H): 1(V).

Footing shall be over-excavated in accordance with the requirements/recommendations of this report.

Excavation Procedures

Temporary excavations of on-site soils should be shored or sloped in accordance with Cal OSHA requirements. Presented herein are guidelines for temporary slope construction and recommendations for shoring in granular soils, (Type C Soils), which were the predominant soils encountered in our borings. In addition, alternate guidelines are provided for temporary slope construction in clayey soils, (Type B Soils) which may be encountered in the areas of planned excavations.

Temporary Slopes

Temporary excavations of on-site granular soils (Type C Soils) should be sloped no steeper than 1.5 horizontal to 1 vertical for excavations up to 20 feet in depth. Compound excavations with vertical sides in lower portions should be properly shielded to a minimum height of 18 inches above the top of the vertical side, with the upper portion having a maximum allowable slope of 1.5 horizontal to 1 vertical.

Temporary excavations in site clayey soils (Type B Soils) should be sloped no steeper than 1 horizontal to 1 vertical for trenches up to 20 feet in depth. Benched excavations 20 feet in depth or less in site clayey soils should be sloped no steeper than 1 horizontal to 1 vertical, with a maximum bench height of 4 feet. Compound excavations with vertical sides in the lower
portions should be properly shielded to a minimum height of 18 inches above the top of the vertical side, with upper portion having a maximum allowable slope of 1 horizontal to 1 vertical.

A Registered Professional Engineer should design slopes or benching for excavations greater than 20 feet in depth.

Should running sand conditions be experienced during excavations operations, flattening of cut slopes faces, or other special procedures, may be required to achieve stable, temporary slopes.

During construction, the soil conditions should be regularly evaluated to verify that conditions are as anticipated. The contractor should be responsible for providing the “competent person” required by OSHA standards to evaluate the soil conditions. Close coordination between the competent person and the soils engineer should be maintained to facilitate construction while providing safe excavations.

Shoring

Temporary shoring will be required for those excavations where temporary slope cuts as specified above are not feasible. Internally braced shoring may be utilized for excavations, however, it is anticipated that difficulties will be experienced during shoring installation due to the presence of dry loose soils in some areas. It is recommended that temporary braced shoring retaining site sandy/gravelly soils be designed considering a uniform lateral earth pressure distribution for the full height of the shoring, with a maximum pressure equal to 22H in pounds per square foot, where H is the height of shoring in feet.

The recommended soil pressure will apply to level soil conditions behind braced shoring. Where a combination of slope embankment and braced shoring is used, the soil pressure will be greater and must be evaluated for actual conditions.

In addition to the above recommended lateral earth pressures, a minimum uniform lateral pressure of 125 pounds per square foot should be incorporated in the design of the upper ten feet of shoring when normal traffic is permitted within ten feet of the shoring. The design of temporary shoring should also include the surcharge loading effects of delivery and construction equipment adjacent to the shoring, as appropriate.
Limitations and Additional Services

Limitations

The recommendations given in this report are based on results of field and laboratory investigations, combined with interpolation of subsurface conditions between exploration locations for only this project. The nature and extent of variations between the explorations may not become evident until construction. If variations are exposed during construction, this office should be notified so the variations can be reviewed and the recommendations of this report modified or verified in writing.

If changes in the nature, design or action of the structure are planned, the recommendations contained in this report shall not be considered valid unless the changes are reviewed and the recommendations of this report modified or verified in writing.

This report has been prepared only to aid in the evaluation of this site and to provide geotechnical recommendations for the design of this project. Any person using this report for bidding or construction purposes should be aware of the limitations of this report as mentioned above and should conduct an independent investigation as he deems necessary to satisfy themselves as to the surface and subsurface conditions to be encountered, and the procedures to be used in the performance of work on this project.

Our professional services have been performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable engineering consultants practicing in this or similar localities. No other warranty, expressed or implied, is made as to the professional advice included in this report. This report has not been prepared for use by other parties, and may not contain sufficient information for purposes of other parties or other uses.

This report is issued with the understanding that the owner has the responsibility to bring the information and recommendations contained herein to the attention of the designers and builders of this project. The owner also has the responsibility to verify that the contractors/builders follow such recommendations. It is understood that the owner is responsible for submittal of the report to the appropriate governing agencies.

This report is based on the assumption that adequate client consultation, construction monitoring, and testing will be performed during the final design and construction to be in compliant with the recommendations of this report.
Additional Testing

Maintaining Merrell Engineering Company, Inc. as the soils engineering consultant from beginning to end of the project will provide continuity of services. The engineering firm providing testing and observations shall assume the responsibility of Soils Engineer of Record.

Construction monitoring and testing would be additional services provided by this firm. The costs of these services are not included in our present professional service agreement or part of our current scope of work. It is recommended that this firm be contacted to perform additional earthwork and materials observation and testing during the following phases of the project:

- Foundation / Footing Excavation & Utility Trench Backfill
- Over-excavation and re-compaction per this report
- Retaining Wall Construction and/or Backfill
- Sub-grade Preparation in New Pavement Areas
- Unusual Conditions Encountered
- Materials Testing and Special Inspections

Closure

We appreciate the opportunity to be of service. Should you have any questions or need further assistance, please do not hesitate to contact our office.
ATTACHMENT A

EXPLORATORY LOGS
<table>
<thead>
<tr>
<th>Major Divisions</th>
<th>Letter</th>
<th>Typical Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Grained</td>
<td>GW</td>
<td>Well-Graded Gravels, Gravel-Sand Mixtures</td>
</tr>
<tr>
<td>Soils</td>
<td>GP</td>
<td>Poorly-Graded Gravels, Gravel-Sand Mixtures</td>
</tr>
<tr>
<td>Gravel</td>
<td>GM</td>
<td>Silty Gravels, Gravel-Sand-Silt Mixtures</td>
</tr>
<tr>
<td>Gravelly Soils</td>
<td>GC</td>
<td>Clayey Gravels, Gravel-Sand-Clay Mixtures</td>
</tr>
<tr>
<td>Sand And</td>
<td>SW</td>
<td>Well-Graded Sands, Gravelly Sands,</td>
</tr>
<tr>
<td>Sandy Soils</td>
<td>SP</td>
<td>Poorly-Graded Sands, Gravelly Sands</td>
</tr>
<tr>
<td>Sands/Gravel</td>
<td>SM</td>
<td>Silty-Sands, Sand-Silt Mixtures</td>
</tr>
<tr>
<td>Sands/Gravel</td>
<td>SC</td>
<td>Clayey Sands, Sand-Clay Mixtures</td>
</tr>
<tr>
<td>Clean Gravels</td>
<td>ML</td>
<td>Inorganic Silts And Very Fine Sands, Rock</td>
</tr>
<tr>
<td>Gravelly Soils</td>
<td>CL</td>
<td>Gravelly Clays, Sandy Clays, Silty Clays</td>
</tr>
<tr>
<td>Clean Sand</td>
<td>OL</td>
<td>Organic Silts And Organic Silty Clays Of</td>
</tr>
<tr>
<td>Gravelly Soils</td>
<td>MH</td>
<td>Low Plasticity</td>
</tr>
<tr>
<td>Clean Sand</td>
<td>CH</td>
<td>Inorganic Silts, Micaceous Or Diatomaceous</td>
</tr>
<tr>
<td>Gravelly Soils</td>
<td>OH</td>
<td>Fine Sand Or Silty Soils</td>
</tr>
<tr>
<td>Silts and</td>
<td>PT</td>
<td>Inorganic Clays Of High Plasticity,</td>
</tr>
<tr>
<td>Clays</td>
<td></td>
<td>Fat Clays</td>
</tr>
<tr>
<td>Silts and</td>
<td></td>
<td>Organic Clays Of Medium To High</td>
</tr>
<tr>
<td>Clays</td>
<td></td>
<td>Plasticity, Organic Silts</td>
</tr>
<tr>
<td>Highly Organic</td>
<td></td>
<td>Peat, Humus, Swamp Soils With</td>
</tr>
<tr>
<td>Soils</td>
<td></td>
<td>High Organic Contents</td>
</tr>
</tbody>
</table>

Relationship of SPT to Relative Denisty of Sand

<table>
<thead>
<tr>
<th>Description</th>
<th>SPT N Blows/ft.</th>
<th>Relative Density %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Loose</td>
<td>4</td>
<td>0-15</td>
</tr>
<tr>
<td>Loose</td>
<td>4-10</td>
<td>15-35</td>
</tr>
<tr>
<td>Medium Dense</td>
<td>10-30</td>
<td>35-65</td>
</tr>
<tr>
<td>Dense</td>
<td>30-50</td>
<td>65-85</td>
</tr>
<tr>
<td>Very Dense</td>
<td>50</td>
<td>85-100</td>
</tr>
</tbody>
</table>

Relative Proportions of Sand and Gravel

<table>
<thead>
<tr>
<th>Descriptive Terms</th>
<th>Percent of Dry Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace</td>
<td><15</td>
</tr>
<tr>
<td>With</td>
<td>15-29</td>
</tr>
<tr>
<td>Modifier</td>
<td>>30</td>
</tr>
</tbody>
</table>

Relative Proportions of Fines

<table>
<thead>
<tr>
<th>Descriptive Terms</th>
<th>Percent of Dry Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace</td>
<td>>5</td>
</tr>
<tr>
<td>With</td>
<td>5-12</td>
</tr>
<tr>
<td>Modifier</td>
<td>>12</td>
</tr>
</tbody>
</table>

SOIL CLASSIFICATION CHART

Unified Soil Classification System

Project: Music Auxiliary Building Project No: 12.0064.0155
Client: Victor Valley Community College District Sample ID: NA
Attachment: A1 Sheet: 1 of 1
<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>SPT Sample Type</th>
<th>WC (%)</th>
<th>In-Place Density (pcf)</th>
<th>Lab Tests</th>
<th>USCS Group</th>
<th>Material Description</th>
<th>Remarks / Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12 SPT</td>
<td></td>
<td></td>
<td>SA</td>
<td>SM</td>
<td>Silty sand</td>
<td>20% Fines</td>
</tr>
<tr>
<td>1</td>
<td>12 Bulk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Easy Drilling</td>
</tr>
<tr>
<td>2</td>
<td>8 Tube</td>
<td>6.0</td>
<td>138.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>17 SPT</td>
<td></td>
<td></td>
<td>SA</td>
<td>ML</td>
<td>Sandy silt</td>
<td>52% fines</td>
</tr>
<tr>
<td>4</td>
<td>13 Bulk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15 Tube</td>
<td>2.0</td>
<td>117.6</td>
<td></td>
<td></td>
<td></td>
<td>Collapsing</td>
</tr>
<tr>
<td>6</td>
<td>6 SPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Silty sand</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8 Tube</td>
<td>1.7</td>
<td>118.6</td>
<td></td>
<td></td>
<td></td>
<td>Moderate Drilling</td>
</tr>
<tr>
<td>8</td>
<td>19 SPT</td>
<td></td>
<td></td>
<td>SA</td>
<td>SW-SM</td>
<td>Well graded sand with silt and gravel</td>
<td>5.2% fines</td>
</tr>
<tr>
<td>9</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12 SPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13 SPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>15 SPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>19 SPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10 SPT</td>
<td></td>
<td></td>
<td>SA</td>
<td>SW-SM</td>
<td>Well graded sand with silt</td>
<td>6.8% fines</td>
</tr>
<tr>
<td>21</td>
<td>12 SPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>13 SPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>19 SPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>10 SPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>11 SPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Difficult drilling</td>
</tr>
<tr>
<td>31</td>
<td>18 SPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>28 SPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXPLORATORY LOG

- **ASTM D 5434, D 1452, D 1586, D 1587, D2488 (USCS), D3550**
- **Project:** Music Auxiliary Building
- **Project No:** 12.0064.0155
- **Client:** Victor Valley Community College District
- **Location No.:** B1
- **Location:** See Attachment C4
- **Attachment:** A2
- **Surface Elev:** Approximately 2,893’
- **Sheet:** 1 of 3

Conducted By: Ryan Heywood

Equipment Operator: 2R Drilling

Equipment Type: CME Drill Rig

Boring Orientation: Vertical

Advance Method: None

Field Tests Conducted: SPT

Shoring Type Used: None

Weather Conditions: None to note

Start / End Date: 06/21/12 / 06/21/12

Start / End Time: 10:45 / 13:30

Equipment Type: CME Drill Rig

Equipment Operator: 2R Drilling

Weather Conditions:

- None to note

Surface Elev: Approximately 2,893’

Sheet: 1 of 3
EXPLORATORY LOG

ASTM D 5434, D 1452, D 1586, D 1587, D2488 (USCS), D3550

<table>
<thead>
<tr>
<th>Depth (ft.)</th>
<th>SPT / Sample Type</th>
<th>WC (%)</th>
<th>In-Place Density</th>
<th>Lab Tests</th>
<th>USCS Group</th>
<th>Material Description</th>
<th>Remarks / Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>9 SPT</td>
<td></td>
<td></td>
<td>SW-SM</td>
<td></td>
<td>Well graded sand with silt and gravel</td>
<td>Very difficult drilling</td>
</tr>
<tr>
<td>36</td>
<td>50x4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fractured cobble in spoils</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>50x5 SPT</td>
<td></td>
<td></td>
<td>SA</td>
<td>SW-SM</td>
<td>Well graded sand with silt and gravel</td>
<td>5.9% fines</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Difficulty drilling</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>9 SPT</td>
<td></td>
<td></td>
<td>SW-SM</td>
<td></td>
<td>Well graded sand with silt and gravel</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>10 SPT</td>
<td></td>
<td></td>
<td>SW-SM</td>
<td></td>
<td>Well graded sand with silt and gravel</td>
<td>Boring terminated at 50'</td>
</tr>
<tr>
<td>51</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conducted By: Ryan Heywood
Equipment Operator: 2R Drilling
Dimensions: 8" x 50'
Drive Weight / Type: 140 lbs
Drill Rod; Type / Dim.: Hollow stem auger / 8" x 5'
Sampler Insertion: Driven
Sample Preservation: ASTM D4220
Backfilled / Date: 6/21/2012
Groundwater Level: Not Encountered
Start / End Time: 10:45 / 13:30

Project: Music Auxiliary Building
Project No: 12.0064.0155
Client: Victor Valley Community College District
Location No: B1
Location: See Attachment C4
Attachment: A2
Surface Elev: Approximately 2,893'
Sheet: 2 of 3

EXPLORATORY LOG
<table>
<thead>
<tr>
<th>Depth (ft.)</th>
<th>SPT Sample Type</th>
<th>Sample WC (%)</th>
<th>In-Place Density</th>
<th>Lab Tests</th>
<th>USCS Group</th>
<th>Material Description</th>
<th>Remarks / Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Silty sand</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Silty sand</td>
<td>Easy Drilling</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Silty sand</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Silty sand</td>
<td>Collapsing</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SW-SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Well graded sand with silt and gravel</td>
<td>Moderate Drilling</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SW-SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Well graded sand with silt</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>SW-SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Well graded sand with silt</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>SW-SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Well graded sand with silt and gravel</td>
<td>Boring Terminated at 30'</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conducted By: Ryan Heywood
Exploration Type: Boring
Equipment Type: CME Drill Rig
Boring Orientation: Vertical
Advance Method: None
Field Tests Conducted: SPT
Shoring Type Used: None
Weather Conditions: None to note
Start / End Date: 06/25/12 / 06/25/12
Equipment Operator: 2R Drilling
Dimensions: 8" x 30'
Drive Weight / Type: 140 lbs
Drill Rod; Type / Dim.: Hollow stem auger / 8" x 5'
Sampler Insertion: Driven
Sample Preservation: ASTM D4220
Backfilled / Date: 6/25/2012
Groundwater Level: Not Encountered
Start / End Time: 7:00 / 7:30

EXPLORATORY LOG
ASTM D 5434, D 1452, D 1586, D 1587, D2488 (USCS), D3550

<table>
<thead>
<tr>
<th>Project: Music Auxiliary Building</th>
<th>Project No: 12.0064.0155</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client: Victor Valley Community College District</td>
<td>Location No.: B1</td>
</tr>
<tr>
<td>Location: See Attachment C4</td>
<td>Attachment: A2</td>
</tr>
<tr>
<td>Surface Elev: Approximately 2,893'</td>
<td>Sheet: 3 of 3</td>
</tr>
</tbody>
</table>
ATTACHMENT B

LABORATORY TESTING
Classification, ASTM D2488: (SM) Silty Sand w/trace of Gravel
Sample Origin: Boring one at an approximate depth of 0-3'

Sample ID: RTH06211225
Maximum Dry Unit Weight (lb/ft³): 130.0
Optimum Moisture Content (%): 8.0

Weight of Soil and Tare (lb):
- 8.91
- 9.16
- 9.49
- 9.42

Wet Weight (g):
- 406.2
- 408.3
- 401.0
- 402.0

Dry Weight (g):
- 396.0
- 388.0
- 371.0
- 363.4

Moisture Content (%):
- 2.6%
- 5.2%
- 8.1%
- 10.6%

Dry Unit Weight (lb/ft³):
- 119.5
- 123.6
- 129.5
- 124.7

Volume of Mold: 30.00
Tare Weight: 4.82
Rammer Used: Manual

Method Used: A

The Material
Was
Was Not
Sampled & tested in accordance with the reqs. of the DSA approved documents.
The requirements of the DSA approved documents.
c: Project Architect, Structural Engineer, Project Inspector, DSA Regional Office, School District

Reviewed By (Signature)

Kevin Luce / Laboratory Manager
Name / Title
Classification / Description (D 2487): (SM) Silty Sand
Color (Moist, Munsell): Not Determined
Sample Origin: Boring one at Surface

Method/Procedure Used (C 117, D 1140):
Procedure A
Size of Initial Dry Mass (g):
320.9
Determination of Dry Mass (D 1140):
Not Applicable
Particles; Shape & Hardness (D 422):
Not Applicable
Dispersion Device/Period (D 422):
Not Applicable
Difficulty, Type & Amount of Agent (D 422):
Not Applicable
Laboratory Comments: -
Gravel Sand Fines Cu Cc MC D100 D60 D30 D10 LL PL PI SG FM
6.7 41.1 52.2 NA NA 11.4% 12.500 0.130 NA NA ND ND ND ND 1.12

Not Applicable

Size of Initial Dry Mass (g):

Dispersion Device/Period (D 422):

Method/Procedure Used (C 117, D 1140):

Sample Origin:

Difficulty, Type & Amount of Agent (D 422):

Laboratory Comments:

Classification / Description (D 2487): (ML) Sandy silt
Color (Moist, Munsell): Not Determined

Project: Music Auxiliary Building Project No: 12.0064.0155
Client: Victor Valley Community College District Sample ID: RTH06211227
Attachment: B2 Sheet: 2 of 5
Classification / Description (D 2487): (SW-SM) Well graded sand with silt and gravel

Color (Moist, Munsell): Not Determined

Sample Origin: Boring one at an approximate depth of fifteen feet

Method/Procedure Used (C 117, D 1140): Procedure A

Size of Initial Dry Mass (g): 370.6

Determination of Dry Mass (D 1140): Not Applicable

Particles; Shape & Hardness (D 422): Not Applicable

Dispersion Device/Period (D 422): Not Applicable

Difficulty, Type & Amount of Agent (D 422): Not Applicable

Laboratory Comments: -
Classification / Description (D 2487):
(SW-SM) Well graded sand with silt

Color (Moist, Munsell):
Not Determined

Sample Origin:
Boring one at an approximate depth of twentyfive feet

Method/Procedure Used (C 117, D 1140):
Procedure A

Size of Initial Dry Mass (g):
309.3

Determination of Dry Mass (D 1140):
Not Applicable

Particles; Shape & Hardness (D 422):
Not Applicable

Dispersion Device/Period (D 422):
Not Applicable

Difficulty, Type & Amount of Agent (D 422):
Not Applicable

Laboratory Comments:
-
Classification / Description (D 2487):
(SW-SM) Well graded sand with silt

Color (Moist, Munsell):
Not Determined

Sample Origin:
Boring one at an approximate depth of forty feet

Method/Procedure Used (C 117, D 1140):
Procedure A

Size of Initial Dry Mass (g):
323.7

Determination of Dry Mass (D 1140):
Not Applicable

Particles; Shape & Hardness (D 422):
Not Applicable

Dispersion Device/Period (D 422):
Not Applicable

Difficulty, Type & Amount of Agent (D 422):
Not Applicable

Laboratory Comments:
-
Classification / Description (D 2487): Not Determined
Color (Moist, Munsell): Not Determined
Sample Origin: Boring one at an approximate depth from surface to three feet

Procedure Performed: Method A
Special Specimen Selection: None
Air Dried Specimen: No
Laboratory Comments: Material classified as Non-Plastic (NP), Plastic Index could not be determined

ATTERBERG LIMITS
ASTM D 4318

Project: Music Auxiliary Building
Client: Victor Valley Community College District
Project No: 12.0064.0155
Sample ID: RTH06211225
Attachment: B3
Sheet: 1 of 1
<table>
<thead>
<tr>
<th>Analysis</th>
<th>Results</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated Resistivity</td>
<td>2500</td>
<td>ohm-cm</td>
</tr>
<tr>
<td>Chloride</td>
<td>20</td>
<td>ppm</td>
</tr>
<tr>
<td>Sulfate</td>
<td>40</td>
<td>ppm</td>
</tr>
<tr>
<td>PH</td>
<td>8.2</td>
<td>pH units</td>
</tr>
<tr>
<td>Redox Potential</td>
<td>137</td>
<td>mV</td>
</tr>
<tr>
<td>Sulfide</td>
<td>40</td>
<td>NA</td>
</tr>
</tbody>
</table>

Sample Origin: Boring one at an approximate depth from surface to three feet
Expansion Potential: Very Low

Final Water Content: 11.5

Sample Origin: Boring one at an approximate depth from surface to three feet
Classification: SM/SP

Boring Number:	1	Initial Moisture Content (%)	2.0
Depth (ft)	8.0	Final Moisture Content (%)	7.9
Specimen Diameter (in)	2.5	Initial Dry Density (pcf)	117.6
Specimen Thickness (in)	1.0		

Consolidation Test Results

Water Added at 0.960

Load (ksf) vs. Consolidation Strain (%) graph.

Project: Music Auxiliary Building
Client: Victor Valley Community College District
Sample ID: RTH06211229
Attachment: B6
Sheet: 1 of 1
ATTACHMENT C

SITE REFERENCE
Sheet: Music Auxiliary Building
Client: Victor Valley Community College District
Attachment: C3
Project No: 12.0064.0155
Sample ID: NA
Sheet: 1 of 1
<table>
<thead>
<tr>
<th>Project</th>
<th>Music Auxiliary Building</th>
<th>Project No.</th>
<th>12.0064.0155</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>Victor Valley Community College District</td>
<td>Sample ID:</td>
<td>NA</td>
</tr>
<tr>
<td>Attachment</td>
<td>C4</td>
<td>Sheet:</td>
<td>1 of 1</td>
</tr>
<tr>
<td>Date</td>
<td>1/31/2009</td>
<td>Lat:</td>
<td>34.472184°</td>
</tr>
<tr>
<td>B-1 Location</td>
<td>Image County of San Bernardino</td>
<td>B-2 Location</td>
<td></td>
</tr>
</tbody>
</table>
ATTACHMENT D

DETAIL ILLUSTRATIONS
CUT-FILL LOT

NOTE:
DEEPER OVEREXCAVATION AND RECOMPACTION SHALL BE PERFORMED IF DETERMINED NECESSARY BY SOILS ENGINEER.
BENCHING DETAIL

Project: Music Auxiliary Building Project No: 12.0064.0155
Client: Victor Valley Community College District Sample ID: NA
Attachment: D2 Sheet: 1 of 1

Lowest bench: depth and width subject to field change based on soils engineer’s inspection. Subdrainage: back drains may be required at the discretion of the soils engineer.
TOP OF SLOPE

<table>
<thead>
<tr>
<th>SLOPE HEIGHT ((h)) (feet)</th>
<th>SETBACK ((A)) (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 10’</td>
<td>5’ MIN.</td>
</tr>
<tr>
<td>10’ - 20’</td>
<td>(h/2) MIN.</td>
</tr>
<tr>
<td>20’+</td>
<td>10’</td>
</tr>
</tbody>
</table>

TOE OF SLOPE

<table>
<thead>
<tr>
<th>SLOPE HEIGHT ((h)) (feet)</th>
<th>SETBACK ((B)) (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 10’</td>
<td>5’ MIN.</td>
</tr>
<tr>
<td>10’ - 30’</td>
<td>(h/2) MIN.</td>
</tr>
<tr>
<td>30’+</td>
<td>15’</td>
</tr>
</tbody>
</table>
ATTACHMENT E

GENERAL GRADING SPECIFICATIONS
GENERAL GRADING SPECIFICATIONS

Grading of the subject site should be performed in accordance with the provisions of the Uniform Building Code and/or applicable ordinances. The following is presented for your assistance in establishing proper grading criteria:

1. GENERAL INTENT

These specifications present the general procedure and requirements for grading and earthwork as shown on the approved grading plans, including preparation of areas to be filled, placement of fill, installation of sub-drains, and excavations. The recommendations contained in this geotechnical report are a part of the earthwork and grading specifications and shall supersede the provisions contained hereinafter in the case of conflict. Evaluations performed by the consultant during the course of grading may result in new recommendations, which could supersede these specifications, or the recommendations of this geotechnical report.

2. CONSTRUCTION INSPECTION

A representative of this firm should inspect all grading operations, including site clearing and stripping. The presence of our field representative will be for the purpose of providing observation and field testing, and will not include any supervising or directing of the actual work of the Contractor, his employees or agents. Neither the presence of our field representative nor the observations and testing by our firm shall excuse the Contractor in any way for defects discovered in this work. It is understood that our firm will not be responsible for job or site safety on this project, which will be the sole responsibility of the Contractor.

3. EARTHWORK OBSERVATION & TESTING

Prior to the commencement of grading, a representative of this firm or a qualified geotechnical consultant (soils engineer, engineering geologist, or their representatives) shall be employed for the purpose of observing earthwork procedures and testing the fills for conformance with recommendations of the geotechnical report and these specifications. It will be necessary that the consultant provide adequate testing and observation so that they may determine that the work was accomplished as specified. It shall be the responsibility of the contractor to assist the consultant and keep the consultant apprised of work schedules and changes so that the consultant may schedule personnel accordingly.
It shall be the sole responsibility of the contractor to provide adequate equipment and methods to accomplish the work in accordance with applicable grading codes and/or agency ordinances, these specifications and the approved grading plans. If, in the opinion of the consultant, unsatisfactory conditions, such as questionable soils, poor moisture condition, inadequate compaction, adverse weather, etc. are resulting in a quality of work less than required in these specifications, the consultant will be empowered to reject the work and recommend that construction be stopped until the conditions are rectified.

4. FILL PLACEMENT AND COMPACTION

4.1. Fill Lifts

Approved fill material shall be placed in areas prepared to receive fill in near-horizontal layers not exceeding eight (8) inches in compacted thickness. The consultant may approve thicker lifts if testing indicates the grading procedures are such that adequate compaction is being achieved with lifts of greater thickness. Each layer shall be spread evenly and shall be thoroughly mixed during spreading to attain uniformity of material and moisture in each layer.

Fill must be inorganic, granular sands or gravel, free from rocks, or lumps greater than six (6) inches in maximum dimension. Each fill lift should be brought to near optimum moisture content and compacted to at least 95 percent (ASTM D1557, D1556, D2922).

4.2. Fill Moisture

Fill layers at a moisture content no less or more than +/- 2% of optimum shall be watered and mixed, and over saturated / wet fill layers shall be aerated by scarification or shall be blended with drier material to obtain a moisture content of +/- 2% of the optimum moisture. Moisture-conditioning and mixing of fill layers shall continue until the fill material is at uniform moisture content at or near optimum moisture but within +/- 2% of the optimum moisture.

4.3. Compaction of Fill

After each layer has been evenly spread, moisture conditioned, and mixed, it shall be uniformly compacted to not less than 95 percent of the maximum dry density (ASTM D1557). Compaction equipment shall be adequately sized and shall be either specifically designed for soil compaction or have proven reliability, to efficiently achieve the specified degree of compaction. In general, the compaction criteria specified below shall be followed unless otherwise noted.
• Footing Subgrade 95% or Greater at +/- 2% Optimum Moisture
• Concrete Slab Subgrade 95% or Greater at +/- 2% Optimum Moisture
• Aggregate Base for Paved Areas 95% or Greater at +/- 2% Optimum Moisture
• Upper 1’ of Subgrade, Paved Areas 95% or Greater at +/- 2% Optimum Moisture
• Matt Foundation Subgrade 95% or Greater at +/- 2% Optimum Moisture
• Cross Gutter Subgrade 95% or Greater at +/- 2% Optimum Moisture
• Structural Fill 90% or Greater at +/- 2% Optimum Moisture
• Curb and Gutter Subgrade 90% or Greater at +/- 2% Optimum Moisture
• Sidewalk Subgrade 90% or Greater at +/- 2% Optimum Moisture
• Retaining Wall Backfill 90% or Greater at +/- 2% Optimum Moisture
• Trench Backfill 90% or Greater at +/- 2% Optimum Moisture

5. FILL SLOPES AND SLOPE CONSTRUCTION

Permanent cut or fill slopes should be constructed with no slopes steeper than 2 horizontal to 1 vertical.

Compacting of slopes shall be accomplished by one of the following procedures:

• By bankrolling of slopes with sheep foot roller at frequent increments of 1 to 2 feet in fill elevation gain, or by other methods producing satisfactory results.

• Fill slopes should be overfilled during construction and then cut back to expose fully compacted soil. The relative compaction of the slopes on to the slope face shall be at least 90 percent.

Where fills slopes are to be placed on existing slopes the ground should be benched. Any fills placed on slopes shall be benched and keyed per details of this report

If the fill is properly compacted, fill embankments may constructed at 2:1 (horizontal to vertical) of flatter. Fill slopes should be overfilled and trimmed back to the desired grade to provide a firm surface. All slopes should be provided with adequate drainage and should be planted immediately with erosion-resistant vegetation.

6. BENCHING

The existing surface shall be benched at least 12 feet wide at the lowest bench and shall be at least 2 feet deep into firm materials compacted to 90%. The lowest bench should be tilted in
the slope at a 2% slope into the embankment. Other benches should be excavated into firm material for a minimum width of 4 feet, and all benches should be approximately 2 feet in height. Deeper removal and re-compaction may be required.

The existing slopes shall be benched to key the fill material to the underlying ground. A minimum of 2 feet normal to the slope shall be removed and re-compacted, as the fill is brought up in layers, to ensure that the new work is constructed on a firm foundation fill. Benching may vary based on field conditions and will be verified/confirmed by our field representative.

In no case will horizontal benching be less than 4 feet and vertical lifts more than 2 feet.

7. COMPACTION TESTING

Field-tests to check the fill moisture and degree of compaction will be performed by the consultant. The location and frequency of tests shall be at the consultant's discretion. In general, the tests will be taken at an interval not exceeding two feet in vertical rise and/or 1,000 cubic yards of embankment. Compaction testing will be in performed in accordance with the American Society for Testing and Materials Standards (ASTM), test methods ASTM D1556 and/or D2922 or other applicable standards.

Maximum dry density tests used to determine the degree of compaction will be performed in accordance with the American Society for Testing and Materials Standards (ASTM), test method ASTM D1557.

8. EXCAVATION

Excavations and cut slopes will be examined during grading. If directed by the consultant, further excavation or over excavation and refilling of cut areas shall be performed, and/or remedial grading of cut slopes shall be performed. Where fill-over-cut slopes are to be graded, unless otherwise approved, the cut portion of the slope shall be made and approved by the consultant prior to placement of materials for construction of the fill portion of the slope.

9. TRENCH BACKFILL

Trench excavations for utility pipes shall be backfilled under engineering supervision. After the utility pipe has been laid, the space under and around the pipe shall be backfilled with clean
sand or approved granular soil to a depth of at least one foot over the top of the pipe. The sand backfill shall be uniformly jetted into place before the controlled backfill is placed over the sand.

The on-site materials, or other soils approved by the consultant, shall be watered and mixed as necessary prior to placement in lifts over the sand backfill.

The controlled backfill shall be compacted to at least 95 percent of the maximum laboratory density as determined by the ASTM compaction method described above.

Field density tests and inspection of the backfill procedures shall be made by the consultant during backfilling to see that proper moisture content and uniform compaction is being maintained. The contractor shall provide test holes and exploratory pits as required by the consultant to enable sampling and testing.
ATTACHMENT F

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL ENGINEERING REPORT
(ASFE PUBLICATION)
More construction problems are caused by site subsurface conditions than any other factor. As troublesome as subsurface problems can be, their frequency and extent have been lessened considerably in recent years, due in large measure to programs and publications of ASFE/The Association of Engineering Firms Practicing in the Geosciences.

The following suggestions and observations are offered to help you reduce the geotechnical-related delays, cost-overruns and other costly headaches that can occur during a construction project.

A GEOTECHNICAL ENGINEERING REPORT IS BASED ON A UNIQUE SET OF PROJECT-SPECIFIC FACTORS

A geotechnical engineering report is based on a subsurface exploration plan designed to incorporate a unique set of project-specific factors. These typically include:

1. The general nature of the structure involved, its size and configuration;
2. The location of the structure on the site and its orientation;
3. Physical concomitants such as access roads, parking lots, and underground utilities;
4. The level of additional risk which the client assumed by virtue of limitations imposed upon the exploratory program.

To help avoid costly problems, consult the geotechnical engineer to determine how any factors which change subsequent to the date of the report may affect its recommendations.

Unless your consulting geotechnical engineer indicates otherwise, your geotechnical engineering report should not be used:

- When the nature of the proposed structure is changed, for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one;
- When the size or configuration of the proposed structure is altered;
- When the location or orientation of the proposed structure is modified;
- When there is a change of ownership, or
- For application to an adjacent site.

Geotechnical engineers cannot accept responsibility for problems which may develop if they are not consulted after factors considered in their report's development have changed.

MOST GEOTECHNICAL "FINDINGS" ARE PROFESSIONAL ESTIMATES

Site exploration identifies actual subsurface conditions only at those points where samples are taken, when they are taken. Data derived through sampling and subsequent laboratory testing are extrapolated by geotechnical engineers who then render an opinion about overall subsurface conditions, their likely reaction to proposed construction activity, and appropriate foundation design. Even under optimal circumstances actual conditions may differ from those inferred to exist.

Because no geotechnical engineer, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than a report indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimize their impact. For this reason, most experienced owners retain their geotechnical consultants through the construction stage, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

SUBSURFACE CONDITIONS CAN CHANGE

Subsurface conditions may be modified by constantly-changing natural forces. Because a geotechnical engineering report is based on conditions which existed at the time of subsurface exploration, construction decisions should not be based on a geotechnical engineering report whose adequacy may have been affected by time. Speak with the geotechnical consultant to learn if additional tests are advisable before construction starts.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical report. The geotechnical engineer should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

GEOTECHNICAL SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND PERSONS

Geotechnical engineers' reports are prepared to meet the specific needs of specific individuals. A report prepared for a consulting civil engineer may not be adequate for a construction contractor, or even some other consulting civil engineer. Unless indicated otherwise, this report was prepared expressly for the client involved and expressly for purposes indicated by the client. Use by any other persons for any purpose, or by the client for a different purpose, may result in problems. No individual other than the client should apply this report for its intended purpose without first conferring with the geotechnical engineer. No person should apply this report for any purpose other than that originally contemplated without first conferring with the geotechnical engineer.
A GEOTECHNICAL ENGINEERING REPORT IS SUBJECT TO MISINTERPRETATION

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a geotechnical engineering report. To help avoid these problems, the geotechnical engineer should be retained to work with other appropriate design professionals to explain relevant geotechnical findings and to review the adequacy of their plans and specifications relative to geotechnical issues.

BORING LOGS SHOULD NOT BE SEPARATED FROM THE ENGINEERING REPORT

Final boring logs are developed by geotechnical engineers based upon their interpretation of field logs (assembled by site personnel) and laboratory evaluation of field samples. Only final boring logs customarily are included in geotechnical engineering reports. These logs should not under any circumstances be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process. Although photographic reproduction eliminates this problem, it does nothing to minimize the possibility of contractors misinterpreting the logs during bid preparation. When this occurs, delays, disputes and unanticipated costs are the all-too-frequent result.

To minimize the likelihood of boring log misinterpretation, give contractors ready access to the complete geotechnical engineering report prepared or authorized for their use. Those who do not provide such access may proceed under the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes which aggravate them to disproportion rate scale.

READ RESPONSIBILITY CLAUSES CLOSELY

Because geotechnical engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against geotechnical consultants. To help prevent this problem, geotechnical engineers have developed model clauses for use in written transmittals. These are not exculpatory clauses designed to foist geotechnical engineers' liabilities onto someone else. Rather, they are definitive clauses which identify where geotechnical engineers' responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your geotechnical engineering report, and you are encouraged to read them closely. Your geotechnical engineer will be pleased to give full and frank answers to your questions.

OTHER STEPS YOU CAN TAKE TO REDUCE RISK

Your consulting geotechnical engineer will be pleased to discuss other techniques which can be employed to mitigate risk. In addition, ASFE has developed a variety of materials which may be beneficial. Contact ASFE for a complimentary copy of its publications directory.

Published by

ASFE
THE ASSOCIATION OF ENGINEERING FIRMS PRACTICING IN THE GEOSCIENCES
8811 Colesville Road/Suite G106/Silver Spring, Maryland 20910/(301) 565-2733
ATTACHMENT G

GEOLOGIC HAZARDS REPORT
INTRODUCTION

At your request, this firm has prepared a Geologic Hazards Report for the proposed Music Auxiliary Building within the Victor Valley College Campus, City of Victorville, California. The purpose for this study was to evaluate the local geologic conditions and seismic hazards, and to develop generalized conclusions and recommendations, if warranted, with respect to the proposed development.

This report has been prepared utilizing the suggested "Checklist for the Review of Engineering Geology and Seismology Reports for California Public Schools, Hospitals, and Essential Services Buildings" (CGS Note 48, 2011), along with the Geologic portion of the "Factors to Be Included in the Geological and Environmental Hazards Report," which is included as Appendix H of the "School Site Selection and Approval Guide," prepared by the School Facility Planning Division, California Department of Education, and the requirements outlined by the DSA (2004).

The scope of services provided for this evaluation included the following:

- Review of available published and unpublished geologic/seismic data in our files pertinent to the site, including photogeologic analysis of aerial photographs.
- Field reconnaissance by a State of California Certified Engineering Geologist including observation of exploratory borings performed by Merrell Engineering Company, Inc.
- Preparation of this report, presenting our findings, conclusions, and recommendations from a geologic standpoint, with respect to the proposed development.

Accompanying Maps, Illustrations, and Appendices

Plate 1 - Regional Geologic Map
Plate 2 - Earthquake Epicenter Map
Plate 3 - Microseismicity Map
Appendix A - References
GEOLOGIC SETTING

The subject site is located within a natural geomorphic province in southern California known as the Mojave Desert. This province consists of a broad interior region of isolated mountain ranges separated by expanses of desert plains, and is characterized by the numerous interior enclosed drainages and playas. The Mojave Desert is in large, bounded structurally on the southwest by the San Andreas Fault and on the northwest by the Garlock Faults, and is ill-defined along the east where the structural patterns resemble the Basin and Range Province to the north and east. This province exhibits interior drainage, including the Mojave River, which has its source in the San Bernardino Mountains and would extend into Death Valley if there was enough water. The geologic units of this region generally consist of three main divisions being: 1) Crystalline rocks of pre-Tertiary age; 2) sediments and volcanic rocks of Tertiary age; and 3) sediments and basalt flows of Quaternary age. Regionally, the site is located along a large alluvial plain, locally underlain by Quaternary age alluvium and older that has been derived predominantly as outwash from the San Bernardino and San Gabriel Mountains to the south and southwest, respectively. These sediments are believed to be as thick as 3,500± feet locally (Subsurface Surveys, 1990).

This alluvial plain is informally referred to as the Victorville fan which originally had it source on the north side of the San Gabriel Mountains, but subsequent right-lateral displacement originating from ground displacement along the San Andreas Fault, has separated it from its source. Figure 1 below depicts the major physiographic features of the region showing the subject site to be located within the Victorville Fan.

FIGURE 1- Major Physiographic Features (from Morton and Miller, 2006, Figure 3)
Locally as mapped by Morton and Miller (2006) and as shown on the Regional Geologic Map, Plate 1, the site is shown to be underlain by middle to early Pleistocene age very old alluvial-fan deposits (map symbol Qvof). They describe these deposits as generally being moderately to well consolidated silt, sand, gravel, and conglomerate, which typically consists of medium to dark, reddish-brown lithic arkose. Subsurface exploratory boring excavations performed by Merrell Engineering Company, Inc. (June 2012) indicate the subject site to be generally underlain by interbedded silty sand and sandy silt to a depth of around 15± feet, in turn underlain at depth by well graded sands with variable amounts of silt and gravel, to a depth of at least 51½ feet. These sediments were noted to be in a generally dense condition.

FAULTING

There are at least forty-one major "potentially active/active" (late Quaternary) faults that are within a 100 kilometer (62 mile) radius of the site as shown on Figure 2 below (site shown as small black square in middle). Of these, there are no active faults known to traverse the site based on published literature, photogeologic analysis, and our field reconnaissance. In addition, the site is not located within a State of California “Alquist-Priolo Earthquake Fault Zone” for fault rupture hazard (Bryant and Hart, 2007).

![Regional Fault Map showing 100 km radius](image-url)
The nearest known zoned active fault is associated with the North Frontal Fault Zone (Western Segment, see Figure 3 below for reference). The nearest active fault segment associated with this zone is located approximately 5.4 miles to the southeast (C.D.M.G., 1988) which is locally referred to as the Ord Mountain Fault. The North Frontal Fault is a southern dipping reverse fault, being approximately 50.1 kilometers in length, with an estimated maximum moment magnitude of M_W 7.2, and an associated slip-rate of 1 ± 0.5 mm/year (C.D.M.G., 1996; Cao et al., 2003; and Petersen et al., 2008). In many places there are high well-developed scarps, which have formed in older Quaternary deposits and are moderately degraded.

![FIGURE 3- Major Fault Map (from Morton and Miller, 2006, Sheet 2 of 4)](image)

GROUNDWATER

The study area lies within the Upper Mojave River Groundwater Basin of southern California. The Mojave River Basin is part of the Mojave Desert region and is bordered by the San Bernardino and San Gabriel Mountains to the south and extends to Afton Canyon to the northeast, with Lucerne Valley and Antelope Valleys bordering the east and west, respectively. The Mojave River, which is located to the east, is the principal source of water recharge to the basin, which originates from the junctions of Deep Creek and West Fork Mojave River at the northern foot of the San Bernardino Mountains. Other sources of recharge include other lesser river tributaries from the San Bernardino and San Gabriel Mountains, as well as deep percolation from rainwater and other artificial means.
The water-bearing deposits are principally unconsolidated and partially consolidated continental sedimentary deposits that form two aquifers (Stamos and Predmore, 1995), the upper one being shallow alluvium (200± feet thick, within 1± mile of the Mojave River), with the regional aquifer underlying most of the basin at depth. The regional aquifer is comprised of unconsolidated older alluvium and fan deposits of Pleistocene to Tertiary age, and partly consolidated to consolidated sediments of Tertiary age. These deposits are as much as 1,000 feet thick in some places and their permeability generally decreases with depth.

Several groundwater reports are available for the region and were used as a guide to determine the historic and recent local groundwater levels and characteristics, which included the following; Lines, 1996; Mendez and Christensen, 1997; Smith, 2000 and 2004; and Stamos and Predmore, 1995. These reports are listed in Appendix A for reference purposes. Additionally, the U.S.G.S. well database was also searched which provided groundwater level data for numerous on-site and nearby wells (U.S.G.S., 2012b). Based on a review of this data, groundwater is shown to vary between depths of around 85 to 130± feet in the general vicinity of the site. Based on subsurface exploration performed by Merrell Engineering, Inc, (June 2012) groundwater was not encountered locally within the proposed building area to a depth of at least 51½ feet.

CBC SEISMIC SUMMARY

Included for this study was an evaluation of the seismic parameters for the subject school site. Since the site is not located within a designated Earthquake Fault Zone (Bryant and Hart, 2007), this evaluation is based on the U.S. Seismic “DesignMaps” Web Application; Version 3.0.0 (U.S.G.S., 2012a), with respect to the 2010 California Building Code (CBC) / ASCE 7-10 Standard (derived from 2008 U.S.G.S. hazard data), of which is tabulated below. Geographically, the site is located at Longitude -117.2645 and Latitude 34.4721 (World Geodetic Survey 1984 coordinates).

TABLE 1 – SUMMARY OF SEISMIC DESIGN PARAMETERS

<table>
<thead>
<tr>
<th>Factor or Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>1.500g</td>
</tr>
<tr>
<td>S1</td>
<td>0.600g</td>
</tr>
<tr>
<td>Fa</td>
<td>1.0</td>
</tr>
<tr>
<td>Fv</td>
<td>1.5</td>
</tr>
<tr>
<td>SDS</td>
<td>1.000g</td>
</tr>
<tr>
<td>SD1</td>
<td>0.600g</td>
</tr>
<tr>
<td>SMs</td>
<td>1.500g</td>
</tr>
<tr>
<td>SM1</td>
<td>0.900g</td>
</tr>
<tr>
<td>TL</td>
<td>12 Seconds</td>
</tr>
<tr>
<td>PGA</td>
<td>0.565g</td>
</tr>
<tr>
<td>Site Soil Classification</td>
<td>D</td>
</tr>
</tbody>
</table>
HISTORIC SEISMIC ACTIVITY

A computerized search, based on Southern California historical earthquake catalogs, has been performed using the programs EQSEARCH (Blake, 1989-2000b) and EPI (Reeder, 2000). The following table and discussion summarizes the known historic seismic events (≥M4.0) that have been estimated and/or recorded during this time period of 1800 to June 2012, within a 100 kilometer (62 mile) radius of the site.

<table>
<thead>
<tr>
<th>Richter Magnitude</th>
<th>No. of Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0 - 4.9</td>
<td>528</td>
</tr>
<tr>
<td>5.0 - 5.9</td>
<td>65</td>
</tr>
<tr>
<td>6.0 - 6.9</td>
<td>13</td>
</tr>
<tr>
<td>7.0 - 7.9</td>
<td>2</td>
</tr>
<tr>
<td>8.0+</td>
<td>0</td>
</tr>
</tbody>
</table>

It should be noted that pre-instrumental seismic events (generally before 1932) have been estimated from isoseismal maps (Toppozada, et al., 1981 and 1982). These data have been compiled generally based on the reported intensities throughout the region, thus focusing in on the most likely epicentral location. Instrumentation beyond 1932 has greatly increased the accuracy of locating earthquake epicenters. A summary of the historic earthquake data is as follows:

- The closest recorded notable earthquake epicenter (magnitude 4.0 or greater) is a M4.0 event (April 4, 1990), located approximately 14 miles to the southeast.
- The largest estimated historical earthquake magnitude within a 62 mile radius of the site is a M6.9 event of December 8, 1812 (approximately 23 miles west-southwest).
- The largest recorded historical earthquake was the M7.6 (Mw7.3) Landers event, located approximately 51 miles to the east-southeast (June 28, 1992).
- The nearest estimated significant historic earthquake epicenter was approximately 18 miles southwest of the site (July 22, 1899, M6.5).
- The nearest recorded significant historic earthquake epicenter was approximately 21 miles southwest of the site (September 12, 1970, M5.4).

An Earthquake Epicenter Map which includes magnitudes 4.0 and greater for a 100 kilometer radius, and a Microseismicity Map which includes magnitudes 0.0 and greater for a 10 mile radius, have been included as Plates 2 and 3, respectively, for reference purposes. These maps were prepared using the computer program EPI (Reeder, 1997), based on the Caltech fault and earthquake epicenter database of instrumentally recorded events from the period of 1932 to June 2012.
FLOODING

According to the Federal Emergency Management Agency (FEMA, 2008), the proposed building addition is not shown to be located within the boundaries of a 100-year flood (Community Panel Number 06071C-6485H, August 28, 2008), such as shown below in Figure 4 below for reference. This map indicates that the site is located within “Zone X,” which is defined as “Areas determined to be outside the 0.2% annual chance floodplain.”

![Figure 4 - Flood Zone Map](from FEMA, Community Panel Number 06071C-6485H)

SECONDARY SEISMIC HAZARDS

Secondary permanent or transient seismic hazards generally associated with severe ground shaking that occurs during an earthquake are ground rupture, liquefaction, seiches or tsunamis, flooding (water storage facility failure), landsliding, ground lurching and lateral spreading, rockfalls, and seismically-induced settlement. These are discussed below.

Ground Rupture:

Ground rupture is generally considered most likely to occur along pre-existing faults. Since there are no faults (active or otherwise) that are known to traverse the site, the potential for ground rupture is considered to be nil.
Liquefaction:
In general, liquefaction is a phenomenon that occurs where there is a loss of strength or stiffness in the soils from repeated disturbances of saturated cohesionless soil that can result in the settlement of buildings, ground failures, or other related hazards. The main factors contributing to this phenomenon are: 1) cohesionless, granular soils having relatively low densities (usually of Holocene age); 2) shallow groundwater (generally less than 40 feet); and 3) moderate-high seismic ground shaking. Due to the absence of shallow groundwater (not encountered within the exploratory borings drilled on-site to a depth of at least 51½ feet) and the relatively dense nature of the underlying alluvial sediments, the potential for liquefaction appears low at this time.

Seiches/Tsunamis:
Based on the far distance of large, open bodies of water and the elevation of the site with respect to sea level, the possibility of seiches/tsunamis is considered nil.

Flooding (Water Storage Facility Failure):
Since no water storage facility (i.e. water tank, dam, etc.) is located above the site, the potential for flooding, caused by water storage facility failure, is considered nil.

Landsliding:
Due to the low-lying relief of the site and vicinity, landsliding due to seismic shaking is considered nil.

Ground Lurching/Lateral Spreading:
Ground lurching is the horizontal movement of soil, sediments, or fill located on relatively steep embankments or scarps as a result of seismic activity, forming irregular ground surface cracks. The potential for lateral spreading or lurching is highest in areas underlain by soft, saturated materials, especially where bordered by steep banks or adjacent hard ground. Due to the presence of the 50±-foot high bank along the Mojave River plain located approximately 1,200± feet to the east, the potential for ground lurching and/or lateral spreading should be considered a potential, although at this time appears to be very low.

Rockfalls:
Since no large rock outcrops are present at or adjacent to the site, the possibility of rockfalls during seismic shaking is nil.

Seismically-Induced Settlement:
Seismically-induced settlement generally occurs within areas of loose granular soils. Based on the provided boring logs, the site appears to be underlain by generally dense sediments therefore the potential for settlement is considered to be low.
CONCLUSIONS AND RECOMMENDATIONS

GENERAL

Based on our review of available pertinent published and unpublished geologic/seismic literature (including the site-specific boring log data), construction of the proposed Music Auxiliary Building appears to be feasible from a geologic standpoint, providing that our recommendations are considered during planning and construction.

CONCLUSIONS:

1. Earth Materials

 Based on our review of available published data and the provided borings logs, the earth materials underlying the site consist of older alluvial fan deposits that locally consist interbedded silty sand and sandy silt to a depth of around $15\pm$ feet, in turn underlain at depth by well graded sands with variable amounts of silt and gravel, to a depth of at least $51\frac{1}{2}$ feet. These sediments were noted to be in a generally dense condition. These deposits have been derived as fan alluvium originating from the San Bernardino and Gabriel Mountains to the south and southwest respectively and appear to be consistent with regional geologic mapping.

2. Faulting

 No active faults are known to traverse the site, based on published literature, and no surficial indications or geomorphic features were observed that are suggestive of faulting. In addition, the site is not located within a designated Alquist-Priolo Earthquake Fault Zone for fault rupture hazards. The nearest mapped (zoned) “active” fault is the North Frontal Fault (western segment) which is located approximately 5.4 miles to the southeast.

3. Seismicity

 The primary geologic hazard that exists at the site is that of ground shaking. Ground shaking from earthquakes accounts for nearly all earthquake losses. Many factors determine the severity of ground shaking at a given location, such as size of earthquake, length of fault rupture (if any), depth of hypocenter, type of faulting (dip slip/strike slip), directional attenuation, amplification, earth materials, and others. Due to the location of the site with respect to regional faulting and the recorded historical seismic activity, moderate to severe ground shaking could be anticipated during the life of the proposed school facilities.

4. Flooding

 According to the Federal Emergency Management Agency, the proposed building addition is not located with a designated floodplain and more specifically, is located outside of the 500-year (0.2% annual chance) floodplain.
5. **Groundwater**

Available published data indicates that the depth to groundwater locally varies between 85 to 130± feet. Based on the site-specific exploratory borings excavated within the proposed building area, groundwater was not encountered to a depth of at least 51½ feet. Groundwater is therefore expected to be greater than 51½ feet in depth.

6. **Secondary Seismic Hazards**

Based on the data obtained during this study as previously discussed, there does not appear to be any permanent or transient secondary seismic hazards that are expected to occur at the subject site. The potential for ground lurching and/or lateral spreading is considered to be very low due to the flat-lying, dry, and dense condition of the older alluvial earth materials that comprise the bluff face. No evidence of previous ground lurching and/or lateral spreading was noted during our literature research, field reconnaissance, or photogeologic analysis. At this time, no mitigation measures appear to be warranted for this hazard.

RECOMMENDATIONS:

1. It is recommended that all structures be designed to at least meet the current California Building Code provisions in the latest CBC edition (2010) and the ASCE Standard 7-10, where applicable. However, it should be noted that the building code is described as a minimum design condition and is often the maximum level to which structures are designed. Structures that are built to minimum code are designed to remain standing after an earthquake in order for occupants to safely evacuate, but then may have to ultimately be demolished (Larson and Slosson, 1992). It is the responsibility of both the property owner and project structural engineer to determine the risk factors with respect to using CBC minimum design values for the subject project. The previously-outlined seismic summary data have been provided for use by the project structural engineer, to aid in evaluating design criteria. This data has been compiled from the U.S.G.S. web application “DesignMaps” using the ASCE 7-10 Standard which was derived from 2008 U.S.G.S. hazard data. This information should be carefully reviewed prior to construction.

2. During peak periods of rainfall heavy runoff could be anticipated and should be properly evaluated by the project Civil Engineer. Any possible flood hazards should also be properly evaluated by the design Civil Engineer.
CLOSURE

Our conclusions and recommendations are based on a field reconnaissance, observation of subsurface exploratory boring excavations, photogeologic analysis, and an interpretation of available existing geotechnical and geologic/seismic data. We make no warranty, either express or implied. Should conditions be encountered at a later date or more information becomes available that appear to be different than those indicated in this report, we reserve the right to reevaluate our conclusions and recommendations and provide appropriate mitigation measures, if warranted. It is assumed that all the conclusions and recommendations outlined in this report are understood and followed. If any portion of this report is not understood, it is the responsibility of the owner, contractor, engineer, and/or governmental agency, etc., to contact this office for further clarification.

Respectfully submitted,
TERRA GEOSCIENCES

Donn C. Schwartzkopf
Certified Engineering Geologist
CEG 1459
PARTIAL LEGEND

- **Qw₂** VERY YOUNG WASH: Unconsolidated mixed sand, gravel, pebble, cobble, and boulder deposits (late Holocene).
- **Qw₁** VERY YOUNG WASH: Unconsolidated sand and gravel deposits (late Holocene).
- **Qyw₃** YOUNG WASH: Unconsolidated silt, sand, and coarse-grained sand to cobble alluvium (early Holocene).
- **Qvof** VERY OLD FAN: Moderately to well consolidated silt, sand, and gravel (middle to early middle Pleistocene).

- **GEOLOGIC CONTACT**: Solid where well-located to approximately-located, dashed where inferred.
- **FAULT**: Solid where accurately located, dashed where approximate, dotted where concealed.
SITE LOCATION: 34.4721 LAT. -117.2645 LONG.

MINIMUM LOCATION QUALITY: C

TOTAL # OF EVENTS ON PLOT: 1345

TOTAL # OF EVENTS WITHIN SEARCH RADIUS: 535

MAGNITUDE DISTRIBUTION OF SEARCH RADIUS EVENTS:

4.0-4.9 : 479
5.0-5.9 : 53
6.0-6.9 : 2
7.0-7.9 : 2
8.0-8.9 : 0

CLOSEST EVENT: 4.0 ON WEDNESDAY, APRIL 04, 1990 LOCATED APPROX. 23 KILOMETERS SOUTHEAST OF THE SITE

LARGEST 5 EVENTS:

7.3 ON SUNDAY, JUNE 29, 1992 LOCATED APPROX. 81 KILOMETERS SOUTHEAST OF THE SITE
7.1 ON SATURDAY, OCTOBER 15, 1999 LOCATED APPROX. 91 KILOMETERS EAST OF THE SITE
6.5 ON THURSDAY, APRIL 16, 1947 LOCATED APPROX. 87 KILOMETERS NORTHEAST OF THE SITE
6.3 ON SUNDAY, JUNE 28, 1992 LOCATED APPROX. 50 KILOMETERS SOUTHEAST OF THE SITE
5.9 ON THURSDAY, OCTOBER 06, 1987 LOCATED APPROX. 87 KILOMETERS SOUTHWEST OF THE SITE

EARTHQUAKE EPICENTER MAP
SITE LOCATION: 34.4721 LAT. -117.2645 LONG.

MINIMUM LOCATION QUALITY: C

TOTAL # OF EVENTS ON PLOT: 8063

TOTAL # OF EVENTS WITHIN SEARCH RADIUS: 257

MAGNITUDE DISTRIBUTION OF SEARCH RADIUS EVENTS:

0.0-0.9: 20
1.0-1.9: 174
2.0-2.9: 99
3.0-3.9: 4
4.0-4.9: 0
5.0-5.9: 0
6.0-6.9: 0
7.0-7.9: 0
8.0-8.9: 0

CLOSEST EVENT: 6 ON TUESDAY, JULY 15, 1980 LOCATED APPROX. 1.8 MILES NORTHWEST OF THE SITE

LARGEST 5 EVENTS:

3.5 ON SATURDAY, FEBRUARY 17, 1990 LOCATED APPROX. 8 MILES SOUTHEAST OF THE SITE
3.2 ON FRIDAY, AUGUST 23, 1940 LOCATED APPROX. 8 MILES NORTHWEST OF THE SITE
3.0 ON MONDAY, AUGUST 31, 1959 LOCATED APPROX. 9 MILES NORTHEAST OF THE SITE
2.9 ON SATURDAY, MAY 04, 1985 LOCATED APPROX. 8 MILES SOUTHEAST OF THE SITE

MICROSEISMICITY MAP
REFERENCES

California Division of Mines & Geology (C.D.M.G.), 1986, "Guidelines to Geologic/Seismic Reports," Note No. 42.

Reeder, W., 2000, EPI Earthquake Epicenter Computer Program, EPI Software Company.

Toppozada, TR. et al., 1981, Preparation of Isoseismal Maps and Summaries of Reported Effects for pre-1900 California Earthquakes, C.D.M.G. OFR 81-11.

MAPS UTILIZED

California Division of Mines and Geology (C.D.M.G.), 1988, Apple Valley South 7½’ Quadrangle, Earthquake Fault Zone Map, Scale 1” = 2,000’.

Toppozada, T.R. et al., 2000, Epicenters of and Areas Damaged by M≥4 California Earthquakes, Map Sheet 49, Scale 1”=25 Miles.

AERIAL PHOTOGRAPHS UTILIZED

Rowe, 1929, Water Resources Institute, California State University San Bernardino, Photo Nos. 13 & 14, Flight 679, Scale 1”=2,000’.

San Bernardino County Flood Control District, 1969, Photo Nos. 4-6, Scale 1” = 2,000’, dated February 1, 1969.