Objective: Explain basic anatomy and physiology of the endocrine system

- **Endocrine system**
 - Consists of target glands that produce hormones
 - Hormones:
 - Natural chemicals that exert their effect on specific tissue
 - Travel via the blood
 - Regulate; metabolism, growth and development, tissue function, sexual function, reproduction, sleep and mood

- **Endocrine glands**
 - Pituitary
 - Thyroid
 - Parathyroid
 - Adrenal
 - Pancreas
 - Ovaries in females and testicles in males

- **Negative-feedback mechanism**
 - Keeps a balance
 - Suppressing mechanism when hormone levels are high

- **Diagnostic test for endocrine disorders (Saunders Chapter 54)**
 - Stimulation and suppression test
 - Radioactive iodine uptake
 - T3 and T4 resin uptake
 - Thyroid stimulating hormone test
 - Thyroid scan with radioisotopes
 - Glucose tolerance test
 - Hemoglobin A1c

Objective: explain endocrine organs and the hormones they produce (Iggy pg. 1361)

- **Gonads**
 - Testes in males
 - Ovaries in females
 - Hormone: luteinizing hormone (LH) and follicle-stimulating hormone (FSH)

- **Adrenal gland**
 - Adrenal cortex hormones
 - Mineralocorticoids
 - Glucocorticoids
 - Androgens
 - Adrenal medulla
 - Epinephrine
 - Norepinephrine
- Mineralocorticoids
 - Aldosterone
- Glucocorticoids
 - Cortisol
- Androgens
 - Estrogen and testosterone

- Thyroid gland (Iggy pg. 1363; table 64-5)
 - Hormones
 - Follicular cells
 - Triiodothyronine (T3)
 - Thyroxine (T4)
 - Regulated by TRH and TSH
 - Parafollicular cells
 - Calcitonin (Thyrocalcitonin)
 - Regulated by serum calcium levels

- Parathyroid glands (Iggy pg. 1364)
 - Hormone: PTH
 - Regulates calcium and phosphate

- Pancreas (endocrine function)
 - Alpha cells
 - Beta cells
 - Delta cells

Objective: identify the disorders and the pathophysiology of the anterior pituitary gland

- Hypopituitarism: pituitary gland either fails to produce one or more of its hormones or do not produce enough of the hormones (Iggy pg. 1372)
 - Causes of hypopituitarism
 - Sheehan’s syndrome
 - Deficiency in ACTH and cortisol results in
 - Deficiency in TSH and thyroid hormone results in
 - Deficiency in LH and FSH results in
 - Growth hormone deficiency (Iggy pg. 1372)
 - In children

- Posterior pituitary hormone deficiency
 - Antidiuretic hormone deficiency
 - Diabetes insipidus

- Hyperpituitarism: oversecretion of anterior pituitary hormones
 - Overproduction of GH
 - Gigantism
 - Acromegaly
 - Treatment for gigantism and acromegaly
- **Diagnostic test**
 - Suppression test
 - Imaging test
- **Transsphenoidal Hypophysectomy**
 - Postoperative care (Iggy pg. 1376- pg. 1377 chart 65-3)
- **Drug therapy**
 - Octreotide (Sandostatin)
 - Bromocriptine (Parlodel)
 - Cabergoline (Dostinex)
 - Pegvisomant (Somavert)
 -

Objective: To identify the disorders and the pathophysiology of the posterior pituitary gland including interventions (Iggy pg. 1378)

- **Diabetes insipidus**
 - Hyposecretion of ADH
 - Types of diabetes insipidus
 - Nephrogenic
 - Primary
 - Secondary
 - Drug induced
 - Sides and symptoms (pg. 1378 chart 65-5)
 - Drug therapy
 - Chloropropamide (Diabinese)
 - Desmopressin acetate (DDAVP)
 - Vasopressin (Pitressin)
 - Nursing intervention

- **Syndrome of Inappropriate Antidiuretic Hormone (SIADH)** (Iggy pg. 1380)
 - Causes
 - Sides and symptoms (related to electrolyte imbalance)
 - Medical interventions
 - Drug therapy
 - Vasopressin antagonist
 - Tolvaptan (Samsca)
 - Conivaptan (Vaprisol)
 - Diuretics
 - Demeclocycline (Declomycin)
 - Hypertonic saline

Objective: To discuss disorders of the adrenal gland (Iggy pg. 1381)

- Types of adrenal insufficiency
 - Addison’s disease (Primary adrenal insufficiency)
 - Adrenal glands cannot produce an adequate amount of hormones despite a normal or increased ACTH level
 - Secondary adrenal insufficiency
• Insufficient amount of ACTH is produced by the pituitary gland
 ▪ Tertiary adrenal insufficiency
 • Insufficient amount of CRH is produced by the hypothalamus.

Deficiencies found in adrenal gland hypofunction
 o Decreased adrenal cortex hormones
 ▪ Cortisol
 • Called the stress hormone
 ▪ Blood sugar (glucose) levels
 ▪ Fat, protein and carbohydrate metabolism to maintain blood glucose (gluconeogenesis)
 ▪ Immune responses
 ▪ Anti-inflammatory actions
 ▪ Blood pressure
 ▪ Heart and blood vessel tone and contraction
 ▪ Central nervous system activation
 ▪ Mineralocorticoids (aldosterone)
 • Regulate sodium and potassium levels
 • blood volume
 • blood pressure
 ▪ Androgens
 • Regulate sexual characteristics
 o Addison’s (Iggy pg. 1382)
 ▪ A decrease in cortisol
 ▪ Cortisol
 ▪ Aldosterone (Mineralocorticoid)
 o Sides and symptoms
 ▪ Iggy pg. 1382; chart 65-8
 o Diagnostic test
 ▪ Cortisol serum
 ▪ ACTH stimulation test
 ▪ Insulin-Induced Hypoglycemia Test
 ▪ 24 hour urine test
 o Drug Therapy
 ▪ Glucocorticoid replacement
 • Cortisone
 ▪ Hydrocortisone (Cortef) PO
 ▪ A synthetic glucocorticoid hormone
 ▪ Steroids
 • Prednisone
 • Dexamethasone
 ▪ Mineralocorticoid replacement
 • Fludrocortisone (Florinef)PO
Addison’s crisis
- Medical emergency
- Acute adrenal failure
- S/S
- Treatment

- Adrenal gland hyperfunction
 - Excessive activity of the adrenal gland
 - causes excessive production of one or more adrenal hormones
 - aldosterone, corticosteroids or/and androgenic steroids
 - Hypercortisolism causes Cushing’s syndrome/disease
 - Oversecretion of aldosterone causes hyperaldosteronism

- Cushing’s disease
 - Excessive glucocorticoids produced by pituitary gland releasing too much adrenocorticotropic hormone (ACTH)

- Cushing’s syndrome
 - Adrenal glands hypersecretion glucocorticoids
 - Over use of glucocorticoid medications

- Cushing’s Syndrome
 - Endocrine disorder characterized by excessive cortisol levels
 - Causes:
 - Tumor of the pituitary gland, adrenal gland or from cancer tumors (ectopic producing ACTH tumors)
 - Taking too much corticosteroid medications
 - Pituitary adenoma (most common cause)
 - Affects more women than men
 - Diagnostic test
 - 24-Hour urine collection to quantitate cortisol levels
 - Dexamethasone suppression test.
 - Low-dose dexamethasone suppression test
 - Interventions for Hypercortisolism
 - Drug therapy
 - Drugs that inhibit cortisol production in the adrenal glands
 - ketoconazole (Nizoral)
 - metyrapone (Metopirone)
 - Adrenal cytotoxic agents (for inoperable adrenal tumors)
 - blocks hormone production of the adrenal gland
 - Mitotane (Lysodren)

- Hyperaldosteronism (Iggy pg. 1390)
 - Excessive secretion of mineralocorticoids from the adrenal gland
 - Conn’s syndrome (primary hyperaldosteronism)
 - High levels of angiotensin II (secondary hyperaldosteronism)
Conn’s syndrome (primary hyperaldosteronism)
 - Hypernatremia
 - Metabolic alkalosis
 - Hypokalemia

 - Main cause of Conn’s syndrome
 - Tumor or hyperplasia of the adrenal gland
 - Aldosterone is produced despite low renin levels

Secondary hyperaldosteronism
 - Caused by reduced renal blood flow which leads to stimulation of the renin-angiotensin mechanism causing hypersecretion of aldosterone
 - Causes of reduced blood flow
 - Obstructive renal artery disease
 - Renal vasoconstriction
 - Heart failure, cirrhosis with ascites, nephrotic syndrome

 - S/S of hyperaldosteronism

 - Medical interventions
 - Drug therapy
 - Aldactone
 - Eplerenone (Inspra)
 - Diagnostic test
 - Serum aldosterone and renin test
 - Fludrocortisone suppression test (FST)
 - Abdominal computerized tomography (CT) scan

Objective: explain the catecholamine producing tumors in the adrenal medulla
 - Pheochromocytoma (Iggy 1390)
 - Adrenal medulla tumor causes hypersecretion of catecholamines

 - Causes
 - Episodic hypertension

 - S/S
 - Extremely high blood pressure
 - Episodic hypertension
 - Headache
 - Diaphoresis
 - Tremors
 - Short of breath
 - Tachycardia

 - Diagnostic test
 - Serum catecholamine test
 - 24 hour urine (vanillylmandelic acid- VMA)
 - Clonidine suppressor test
 - Imaging test
• Treatment
 o Adrenalectomy

• Drug therapy
 o Alpha-adrenergic blockers
 o Beta-adrenergic blockers

Objective: discuss physical assessment, clinical manifestation, interventions and laboratory test associated with disorders of the thyroid and parathyroid glands

• Hyperthyroidism (Iggy chapter 66)

• Forms of hyperthyroidism
 o Graves’ disease
 o Toxic multinodular goiter
 o Exogenous hyperthyroidism

• Graves’ disease
 o An autoimmune disease
 o Oversecretion of thyroid hormones causing the body’s metabolism to increase excessively
 o S/S
 ▪ Exophthalmos
 ▪ Goiter
 ▪ Multisystem change
 ▪ Pretibial myxedema

• Toxic multinodular goiter (Iggy Pg. 1449)
 o Excess production of thyroid hormones from thyroid nodules or adenomas

• Exogenous hyperthyroidism
 o Caused by excessive use of thyroid hormone drugs
 o Treatment for thyroid cancer
 o Weight loss

• S/S of hyperthyroidism
 o

• Thyroid storm
 o Medical emergency
 o Excessive production of thyroid hormones

• Diagnostic test for hyperthyroidism
 o Thyroid panel
 o Thyroid suppression test
 o Radioactive iodine uptake
 o TSH serum levels
 o Thyrotropin receptor antibody test

• Drug therapy
 o Block thyroid hormone synthesis
 ▪ Tapazole (methimazole)
 ▪ PTU (propylthiouracil)
 ▪ Lugol’s solution
 ▪ SSKI (Potassium Iodide)
Sodium iodide (131I)

- Thyroidectomy
 - Postoperative care

Hypothyroidism Myxedema (Iggy pg. 1400)

- Causes of hypothyroidism
 - Thyroidectomy
 - Radiation treatment
 - Hashimoto’s disease
 - Pituitary gland failure
 - Iodine deficiency
 - Antithyroid medications

- Primary hypothyroidism
 - Loss of thyroid tissue
 - Surgical removal
 - Radiation induced thyroid destruction
 - Autoimmune
 - Congenital
 - Thyroid cancer
 - Not enough iodide in soil

- Secondary hypothyroidism
 - Inadequate amount of TSH
 - Target tissues do not respond
 - Tumor to pituitary or hypothalamus
 - Trauma
 - Infection

- S/S

- Interventions for patients with hypothyroidism
 - Assess respiratory system
 - Oxygen saturation
 - Vital signs
 - Heart rate
 - Blood pressure
 - Mental status
 - Speech
 - Diet
 - Constipation

- Drug therapy
 - Levothyroxine (Synthroid) most common drug

- Myxedema coma (Iggy pg. 1403; chart 66-7)
 - Severe form of hypothyroidism
 - Medical emergency
 - Triggered by stressors
 - S/S
- Decreased cardiac output
- Cerebral hypoxia
- Bradycardia
- Hypotension
- Hypothermic

 - Lab test for hypothyroidism
 - Thyroid panel
 - Thyroid suppression test
 - Radioactive iodine uptake
 - TSH serum levels
 - Thyrotropin receptor antibody test

- Thyroiditis
 - Acute, sub-acute and chronic
 - Inflammation of the thyroid gland

- Thyroid cancers
 - Papillary
 - Follicular
 - Medullary
 - Anaplastic

Objective: discuss the pathophysiology, manifestations, treatments and diagnostic test for patients with parathyroid disorders

Hyperparathyroidism: excess amount of parathyroid hormone (PTH) increases blood calcium levels

- Causes of hyperparathyroidism (Iggy pg. 1406; table 66-3)
 - Tumors, carcinoma
 - Trauma
 - Vitamin D deficiency
 - Chronic kidney disease
 - Carcinomas in the body that produce their own PTH

- Manifestations of hyperparathyroidism
 - Osteoporosis
 - Kidney stones
 - Fatigue
 - Weakness
 - Dehydration
 - Depression
 - Abdominal distress

- Diagnostic test
 - Serum calcium and phosphate
 - Serum magnesium
 - Serum PTH
 - 24 hour urine
• Treatment for hyperparathyroidism
 o Surgical removal of the parathyroid
 o Non-surgical due to hypercalcemia
 ▪ Diuretics
 ▪ Lasix
 ▪ IV normal saline in large quantities, goal is to hydrate patient
 ▪ Calcimimetics
 ▪ Bisphosphonates

Hypoparathyroidism
• Hyposecretion of parathyroid hormone (PTH)
• Causes abnormal levels of serum calcium levels
• Causes high levels of phosphorus (hyperphosphatemia)
• Types of hypoparathyroidism
 o Iatrogenic
 o Idiopathic
 o Hypomagnesemia

• Manifestations of hypoparathyroidism
 o Hypocalcemia (Iggy pg. 189)
 o Hypomagnesemia (Iggy pg. 193)

• Treatment for hypoparathyroidism
 o Calcium supplements
 o Vitamin D
 o Magnesium supplements
 o Severe hypocalcemia; IV 10% calcium chloride or calcium gluconate

Diabetes Mellitus

Type I/insulin dependent diabetes mellitus (Iggy pg. 1416)
• Autoimmune disorder
• Affects children and young adults
• S/S
 o Metabolic syndrome (Syndrome X) (Iggy pg. 1417)

• Oral anti-diabetic medications (Iggy pg. 1423; chart 67-3)
 o Second-Generation Sulfonylurea Agents
 o Meglitinide Analogs
 o Biguanides
 o Alpha-Glucosidase Inhibitors
 o Thiazolidinedione
 o Incretion Mimetics (GLP-1 agonist)

• Difference between hypoglycemia and hyperglycemia (Iggy pg. 1452; table 67-4)
• S/s of hypoglycemia (Iggy pg. 1451- table 67-13)

• Treatment of hypoglycemia in the hospital (Iggy pg 1452)

• Laboratory and diagnostic test
 o Serum
 ▪ Fasting blood glucose
 ▪ Casual blood glucose concentration
 ▪ HbA1c (used to see manage treatment not a diagnostic test)

• Blood glucose phenomena in patients with diabetes mellitus
 o Dawn phenomenon
 o Somogyi phenomenon

• Diet
 o Carbs
 o Fats
 o Protein
 o Fiber

• Exercise

• Gestational diabetes
 o During pregnancy

• Complications of diabetes mellitus
 o Diabetes ketoacidosis
 ▪ S/S
 o Hyperglycemia Hyperosmolar State (HHS)
 ▪ S/S

• Insulin therapy for DKA and HHS
 o IV and subQ
 o IV drip
 o Regular insulin only

• Potassium therapy (K-riders)

• Resources for patients with diabetes mellitus