Math-226- DLA for U-Substitution

Name: _____

Objective: Learning to integrate using U-Substitution Method.

U-Substitution/ Substitution Method of Integration "U- Sub" as it is called, is known as the reverse of the **chain rule.** In the chain rule, you must identify parts of the equation as the "Inside Function" and the "Outside Function." In *u-Sub*, you must identify the inside function and the derivative of the outside function.

When to use Substitution Method

For an Integral to entail the use of U-Sub, The derivative of the inside function must be:

- Able to eliminate any other variables.
- Able to derive to a constant, so that the variable will be eliminated.
- In some Situations, either the inside or the derivative of the inside functions can be used as U

Common U-Sub Situations

$$\int 4x (x^2 + 5)^3 dx \qquad \int \frac{x^3}{(2 + x^4)^2} dx$$

$$u = (x^2 + 5) \qquad u = (2 + x^4)$$

$$\int x\sqrt{3x^2 + 4} \, dx$$

$$\int x^3 e^{x^4} dx$$

$$u = (3x^2 + 5)$$

$$u = x^4$$

Example 1:

$$\int 2x\cos(x^2)\,dx$$

Step 1: Identify u

$$u = x^2$$

Step 2: Take Derivative of u

$$du = 2x dx$$

Step 3: Apply formula to solve for dx

$$\frac{du}{2x} = \frac{2x \, dx}{2x}$$
$$dx = \frac{du}{2x}$$

Step 4: Replace x and dx

$$\int 2x \cos(u) \, \frac{du}{2x}$$

Step 5: Cancel out non-u variables.

$$\int \sqrt{\frac{2x}{x}} \cos(u) \, du$$

Step 6: Integrate in terms of u

$$\int \cos(u) \, du = \sin(u)$$

Step 7: Replace *u* and evaluate in terms of *x*

$$\sin(x^2) + C$$

U-Substitution Practice Problems

For exercises 1-5, integrate with given u.

1.
$$\int (x+6)^{-2} dx$$
 $u = (x+6)$

2.
$$\int t\sqrt{t^2+1} dt$$
 $u=(t^2+1)$

3.
$$\int \sin(4\theta - 7) d\theta \quad u = (4\theta - 7)$$

4.
$$\int sec^2(x)\tan(x) dx \quad u = tanx$$

$$5. \int \frac{(\ln(x))^2}{x} dx \quad u = \ln(x)$$

For exercises 6-10, integrate using u-substitution.

6.
$$\int \frac{5x^4 + 2x}{(x^5 + x^2)^3} dx$$

7.
$$\int \theta \sin(\theta^2) d\theta$$

8.
$$\int x^2(x^3+1)^{12} dx$$

9.
$$\int_{-1}^{2} \sqrt{5x + 6} \, dx$$

$$10. \quad \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cot \frac{x}{2} \csc \frac{x}{2} \ dx$$

For exercises 11-14, complete the challenge problems (optional)

11.
$$\int x\sqrt{3x+5} \ dx$$

12.
$$\int 4xe^{x^2+e^{x^2}} dx$$

13.
$$\int_{e}^{e^4} \frac{dx}{x\sqrt{\ln x}}$$

$$14. \quad \int_0^{\frac{\pi}{6}} \sec^2\left(2x - \frac{\pi}{6}\right) dx$$